www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrieren und Differenzieren" - Bessel-Funktion
Bessel-Funktion < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bessel-Funktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:29 So 02.05.2010
Autor: math101

Aufgabe
Die sogenannte Bessel-Funktion nullter Ordnung ist durch [mm] f(x)=1/\pi \integral_{0}^{\pi}{cos(xsin(t)) dt} [/mm] gegeben.
Man gebe eine Schreanke für die k-te Ableitung von f an.

Hallo, alle zusammen!
Könnte mir jemand bei der Aufgabe helfen?
Ich habe überhaupt keine Ahnung, was man mit k-ter Ableitung von diesem Integral meint. Muss ich das als Reihe darstellen und dann die k-te Ableitung bestimmen? Reihendarstellung von f(x)= [mm] \summe_{k=0}^{\infty}\bruch{(-1)^k}{\Gamma(k+1)\Gamma(k+1)}(x/2)^{2k}. [/mm] Soll ich das Ableiten?
Ich bräuchte ein kleines Tipp, um weiter zu arbeiten.
Danke viel mals.
Gruß

        
Bezug
Bessel-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:08 Mo 03.05.2010
Autor: fred97

Mit  g(x,t):= cos(xsin(t)) ist



$ [mm] f(x)=1/\pi \integral_{0}^{\pi}{g(x,t)dt} [/mm] $

und damit

      [mm] $f^{(k)}(x) [/mm] = [mm] 1/\pi \integral_{0}^{\pi}{\bruch{\partial^k}{\partial x^k}g(x,t)dt} [/mm] $

Überlege Dir, dass [mm] $|\bruch{\partial^k}{\partial x^k}g(x,t)| \le [/mm] 1 $ ist.

FRED

Bezug
                
Bezug
Bessel-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:22 So 12.12.2010
Autor: qsxqsx

Hallo,

Ich habe gerade nach einem Beweis gesucht, dass die Bessel Funktion unendlich viele Nullstellen hat.

Aufjedenfall bin ich auf das hier gestossen, und frage mich was das

$ [mm] |\bruch{\partial^k}{\partial x^k}g(x,t)| \le [/mm] 1 $

nützen soll bezüglich der Grenze der k-ten Ableitung? Ich seh da keine Grenze, wenn man f(x) nach x ableitet erhält man immer sowas in der Form [mm] \pm cos(x(sin(t))*sin(t)^{n} [/mm] oder [mm] \pm sin(x*sin(t))*sin(t)^{n+1} [/mm]

Danke.

Gruss

Bezug
                        
Bezug
Bessel-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:29 So 12.12.2010
Autor: fred97

Hallo Stan L.,

wir haben:

          

      $ [mm] f^{(k)}(x) [/mm] = [mm] 1/\pi \integral_{0}^{\pi}{\bruch{\partial^k}{\partial x^k}g(x,t)dt} [/mm] $

und

      

$ [mm] |\bruch{\partial^k}{\partial x^k}g(x,t)| \le [/mm] 1 $

Damit ist [mm] $|f^{(k)}(x) [/mm] | [mm] \le [/mm] 1$

Die Frage ist : darf man hinter dem Integral differenzieren ?  Man darf !


FRED norris

Bezug
                                
Bezug
Bessel-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:40 So 12.12.2010
Autor: qsxqsx

Hast du mich aber überrascht! Was für ein Zufall..., heute muss mein Glückssonntag sein!

Achso, dann ist es ganz trivial. Man darf unendlich oft differenzieren?


QSXQSX (ich glaube ich schreibe es ab jetzt auch immer gross, damit es niemand vergisst... leg dir einen elektronischen Stempel zu auf dem gross und kräftig "FRED" steht.

Gruss

Bezug
                                        
Bezug
Bessel-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 So 12.12.2010
Autor: fred97


> Hast du mich aber überrascht! Was für ein Zufall...,
> heute muss mein Glückssonntag sein!
>  
> Achso, dann ist es ganz trivial. Man darf unendlich oft
> differenzieren?

Ja

>  
>
> QSXQSX (ich glaube ich schreibe es ab jetzt auch immer
> gross, damit es niemand vergisst...


KUHESSIG vergisst garantiert keiner ...

> leg dir einen
> elektronischen Stempel zu auf dem gross und kräftig "FRED"
> steht.


.....................  den hab ich mir schon zugelegt, als Du noch in die Windeln gemacht hast ...


FRED

>  
> Gruss


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de