www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Best. ganzrationaler Funktion
Best. ganzrationaler Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Best. ganzrationaler Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:45 Mi 29.09.2004
Autor: Superente

Zwei Straßen seind durch die Halbgerade y = 0 für x <= 1 und y =2 für x >= 3 gegeben. Sie sollen durch einen Übergangsbogen miteinadner verbunden werden. Der Einfachheit wegen soll dieser Bogen der Graph einer ganzrationalen Funktion f mit möglichst kleinem Grad sein.

a) Der Graph von f soll an den Anschlussstelllen die Steigung 0 haben. Bestimme f(x).

b) f soll an den Anschlussstelllen in der ersten und in der zweiten Ableitung mit den Halbgeraden übereinstimmmen. Bestimme f(x).

a)

f (3) = 2
f'(3) = 0
f (1) = 0
f'(1) = 0

...

a = -0.5
b =  3
c = -4,5
d =  2

Welche neue Bedingung kommt jetzt bei b noch  dazu?!
Bzw. was ist mit "die zweiten Ableitung soll mit den Halbgeraden übereinstimmmen" gemeint? Bekannt ist mir, dass ich ein höheres Polynom nehmen muss, nur irgendwie verstehe ich nicht was von mir gewollt wird :/
[Aufgabe a muss nicht überprüft werden ;)]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Best. ganzrationaler Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Mi 29.09.2004
Autor: Paulus

Hallo Superente

[willkommenmr]

vermutlich musst du dann wohl ein Polynom 5. Grades nehmen.

Ich denke, von einer horizontalen Geraden sind alle Ableitungen $= 0$.

Du sollst also von deinem gesuchten Polynom die 2. Ableitung bilden, und das sollte dann an den Stellen $x=1$ und $x=3$ den Wert $0$ haben.

Damit erreicht man, dass die Kurven besser in die Geraden übergehen. Der Autofahrer muss das Steuer dann nicht so abrupt herumreissen! ;-)

Mit lieben Grüssen

Paul

P.S. Uebrigens: Eine Funktion kann sehr wohl gerade oder ungerade sein!

Wenn gilt: $f(x)=f(-x)$ für alle $x$, dann wird die Funktion als gerade bezeichnet.

Wenn gilt: $f(x)=-f(-x)$ für alle $x$, dann wird die Funktion als ungerade bezeichnet.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de