Best. log-Likelihood-Funktion < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 17:22 Fr 11.12.2009 | Autor: | Mutter |
Aufgabe | Seien $S=(y,q), R=(x,p)$ Lotterien mit möglichen Konsequenzen $x$ bzw. $y$ bei entsprechender Wahrscheinlichkeit $p$ bzw. $q$. Seien [mm] $\lamba S:=(y,\lambda [/mm] q)$ und [mm] $\lambda R:=(x,\lampda [/mm] p)$, [mm] $\lambda\in(0,1)$. [/mm] Bezeichne [mm] $P:(0,1)\rightarrow\[0,1\]:\lambda\mapsto P(\lambda)$ [/mm] der Anteil der Individuen, die für gegenbenes [mm] $\lambda$ [/mm] die Lotterie [mm] $\lambda [/mm] S$ über [mm] $\lambda [/mm] R$ wählen.
Eine Gruppe $T$ von $N=|T|$ Individuen wird zu zwei verschiedenen Zeitpunkten gebeten, zwischen [mm] $\lambda [/mm] S$ und [mm] $\lambda [/mm] R$ zu wählen. Definiere [mm] $\bruch{a}{N}$ [/mm] der Anteil derer, die in beiden Durchführungen [mm] $\lambda [/mm] S$ wählen und [mm] $\bruch{b}{N}$ [/mm] der Anteil derer, die in beiden Durchführungen [mm] $\lambda [/mm] R$ wählen. Der Anteil derer, die zwischen den beiden Befragungen die Präferenz wechseln ist dann [mm] $1-\bruch{a}{N}-\bruch{b}{N}$.
[/mm]
Die Annahme wird gemacht, dass für alle Teilmengen [mm] $\theta\in\mathfrak{P}(T)$ [/mm] von Individuen aus dem Testsatz gilt [mm] $P(\lambda|\theta)=P(\lambda)$, [/mm] also heterogenes Verhalten.
Die Autoren sagen nun, dass die Schätzer der Erwartungswerte [mm] $\mathbb{E}[\bruch{a}{N}],\mathbb{E}[\bruch{b}{N}],\mathbb{E}[1-\bruch{a}{N}-\bruch{b}{N}]$ [/mm] von [mm] $P(\lambda)\equiv [/mm] P$ abhängen und dass die log likelihood Funktion für $P$ folgende Form habe:
[mm] $\ln\mathcal{L}(P)=a\ln (P^{2})+(N-a-b)\ln(2P(1-P))+b\ln((1-P)^{2})$ [/mm] |
Mir scheint, dass die Werte (Schätzer der Erwartungswerte sind ja nur die Mittelwerte aus $T$) anhand derer wir den Parameter $P$ bestimmen wollen nicht i.i.d. sind, da deren Summe 1 ergeben muss. Ich weiss nicht, was die gemachten Annahmen sind und ach je, ich weiss nicht, wie diese Maximum Likelihood Funktion bestimmt worden ist. Ich habe allerdings kaum je sowas gelernt und noch nicht konkret ausgerechnet.
Ist unter den geübteren unter Euch jemand, der erkennen kann, was die Annahmen sind und wie die Funktion bestimmt wird?
Das ganz bezieht sich auf den Artikel, Seite 1093
Decisions, Error and Heterogeneity
T. Parker Ballinger; Nathaniel T. Wilcox
The Economic Journal, Vol. 107, No. 443. (Jul., 1997), pp. 1090-1105.
Auf jstor.org
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Mo 11.01.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|