www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Best. log-Likelihood-Funktion
Best. log-Likelihood-Funktion < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Best. log-Likelihood-Funktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:22 Fr 11.12.2009
Autor: Mutter

Aufgabe
Seien $S=(y,q), R=(x,p)$ Lotterien mit möglichen Konsequenzen $x$ bzw. $y$ bei entsprechender Wahrscheinlichkeit $p$ bzw. $q$. Seien [mm] $\lamba S:=(y,\lambda [/mm] q)$ und [mm] $\lambda R:=(x,\lampda [/mm] p)$, [mm] $\lambda\in(0,1)$. [/mm] Bezeichne [mm] $P:(0,1)\rightarrow\[0,1\]:\lambda\mapsto P(\lambda)$ [/mm] der Anteil der Individuen, die für gegenbenes [mm] $\lambda$ [/mm] die Lotterie [mm] $\lambda [/mm] S$ über [mm] $\lambda [/mm] R$ wählen.
Eine Gruppe $T$ von $N=|T|$ Individuen wird zu zwei verschiedenen Zeitpunkten gebeten, zwischen [mm] $\lambda [/mm] S$ und [mm] $\lambda [/mm] R$ zu wählen. Definiere [mm] $\bruch{a}{N}$ [/mm] der Anteil derer, die in beiden Durchführungen [mm] $\lambda [/mm] S$ wählen und [mm] $\bruch{b}{N}$ [/mm] der Anteil derer, die in beiden Durchführungen [mm] $\lambda [/mm] R$ wählen. Der Anteil derer, die zwischen den beiden Befragungen die Präferenz wechseln ist dann [mm] $1-\bruch{a}{N}-\bruch{b}{N}$. [/mm]
Die Annahme wird gemacht, dass für alle Teilmengen [mm] $\theta\in\mathfrak{P}(T)$ [/mm] von Individuen aus dem Testsatz gilt [mm] $P(\lambda|\theta)=P(\lambda)$, [/mm] also heterogenes Verhalten.
Die Autoren sagen nun, dass die Schätzer der Erwartungswerte [mm] $\mathbb{E}[\bruch{a}{N}],\mathbb{E}[\bruch{b}{N}],\mathbb{E}[1-\bruch{a}{N}-\bruch{b}{N}]$ [/mm] von [mm] $P(\lambda)\equiv [/mm] P$ abhängen und dass die log likelihood Funktion für $P$ folgende Form habe:
[mm] $\ln\mathcal{L}(P)=a\ln (P^{2})+(N-a-b)\ln(2P(1-P))+b\ln((1-P)^{2})$ [/mm]

Mir scheint, dass die Werte (Schätzer der Erwartungswerte sind ja nur die Mittelwerte aus $T$) anhand derer wir den Parameter $P$ bestimmen wollen nicht i.i.d. sind, da deren Summe 1 ergeben muss. Ich weiss nicht, was die gemachten Annahmen sind und ach je, ich weiss nicht, wie diese Maximum Likelihood Funktion bestimmt worden ist. Ich habe allerdings kaum je sowas gelernt und noch nicht konkret ausgerechnet.

Ist unter den geübteren unter Euch jemand, der erkennen kann, was die Annahmen sind und wie die Funktion bestimmt wird?

Das ganz bezieht sich auf den Artikel, Seite 1093

Decisions, Error and Heterogeneity
T. Parker Ballinger; Nathaniel T. Wilcox
The Economic Journal, Vol. 107, No. 443. (Jul., 1997), pp. 1090-1105.
[]Auf jstor.org

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Best. log-Likelihood-Funktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mo 11.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de