www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Bestim. ganzrationale Funktion
Bestim. ganzrationale Funktion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestim. ganzrationale Funktion: immer kommt null raus?
Status: (Frage) beantwortet Status 
Datum: 19:50 Mi 03.05.2006
Autor: ichonline

Aufgabe
Bestimmen Sie alle ganzrationalen Funktionen 3ten Grades, deren Graph punktsymmetrisch zum Ursprung ist und für x=2 einen Extrempunkt hat.

Also ich habe mir da Gedanken gemacht, aber ich komme nicht weiter, vielleicht kann mir jemand sagen was falsch ist.

Also f(x)=ax³+bx
       f'(x)=3ax²+b
       f''(x)=6ax
Wegen der Punktsymetrie durch den Ursprung bekomm ich ja einen Punkt raus.
P1(0/0)
Extrempunkt bei x=2 bedeutet ja, dass f'(2)=0

so dann habe ich also zwei Punkte, wenn ich aber punkt P in f(x) einsetze, erhalte ich 0=0; und  f'(2) = 12a+b=0. Also fehlt mir eine 2 Gleichung um a und b auszurechnen. ich könnte noch f'(-2)=0 bilden, aber da kommt ja das selbe raus, und dann komm ich auch nicht weiter. Um f(2) zu bilden fehlt mir ja leider der y-Wert f(2)=? -> 8a+2=?

Hoffe mir kann einer helfen.

MFG ichonline

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Bestim. ganzrationale Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Mi 03.05.2006
Autor: Bastiane

Hallo!

> Bestimmen Sie alle ganzrationalen Funktionen 3ten Grades,
> deren Graph punktsymmetrisch zum Ursprung ist und für x=2
> einen Extrempunkt hat.
>  Also ich habe mir da Gedanken gemacht, aber ich komme
> nicht weiter, vielleicht kann mir jemand sagen was falsch
> ist.
>  
> Also f(x)=ax³+bx
> f'(x)=3ax²+b
>         f''(x)=6ax
>  Wegen der Punktsymetrie durch den Ursprung bekomm ich ja
> einen Punkt raus.
>  P1(0/0)
>  Extrempunkt bei x=2 bedeutet ja, dass f'(2)=0
>  
> so dann habe ich also zwei Punkte, wenn ich aber punkt P in
> f(x) einsetze, erhalte ich 0=0; und  f'(2) = 12a+b=0. Also
> fehlt mir eine 2 Gleichung um a und b auszurechnen. ich
> könnte noch f'(-2)=0 bilden, aber da kommt ja das selbe
> raus, und dann komm ich auch nicht weiter. Um f(2) zu
> bilden fehlt mir ja leider der y-Wert f(2)=? -> 8a+2=?

Es ist ganz klar, dass dir eine Gleichung zur eindeutigen Bestimmung einer solchen Funktion fehlt, denn du sollst ja alle solche Funktionen bestimmen. Aus der Angabe mit dem Extrempunkt erhältst du also:

12a+b=0 [mm] \gdw [/mm] 12a=-b [mm] \gdw a=-\bruch{1}{12}b [/mm]

Das heißt, alle Funktionen der Form [mm] f(x)=-\bruch{1}{12}bx^3+bx [/mm] erfüllen die Bedingung und du bist fertig. :-)

Viele Grüße
Bastiane
[cap]

[Dateianhang nicht öffentlich]


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Bestim. ganzrationale Funktion: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:30 Mi 03.05.2006
Autor: ichonline

VIelen Dank! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de