www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Bestimmen von k
Bestimmen von k < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmen von k: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Di 11.09.2007
Autor: hase-hh

Aufgabe
Teilaufgabe. Gibt es ein k für das die Funktion [mm] f_{k} [/mm] im Intervall [0;k] das Flächenmaß [mm] \bruch{1}{e} [/mm] besitzt?

*** Die Stammfunktion lautet: [mm] F(x)=e^{-x}*(x-k+1) [/mm] ***




Guten Tag,

bei dieser Teilaufgabe komme ich nicht weiter. Kann zwar die Lösung nachvollziehen, aber wie kommt man darauf?!

Meine Frage, wie kann ich die unten stehende Gleichung nach k auflösen? Oder muss ich das k raten?


Ich kann euch die Stammfunktion nennen, sie lautet:

[mm] F(x)=(x-k+1)*e^{-x} [/mm]

Das zu bestimmende Flächenmaß errechnet sich wie folgt:

[mm] \bruch{1}{e} [/mm] =  [mm] \bruch{1}{e^k} [/mm] - (-k+1)  

[mm] \bruch{1}{e} [/mm] = [mm] \bruch{1}{e^k} [/mm] +k-1

1 = [mm] e*\bruch{1}{e^k} [/mm] + e*k - 1*e

[mm] e^k [/mm] = e  + [mm] e^k*ke -e^k*e [/mm]

e = [mm] e^k [/mm] - [mm] e^k*ke +e^k*e [/mm]  

e = [mm] e^k [/mm] * (1 -ke +e)

und wenn ich für k=1 einsetze, dann erhalte ich  e = e*1  

aber wie komme ich auf k?

durch raten? oder kann man k auch berechnen?


vielen dank!

gruß
wolfgang






        
Bezug
Bestimmen von k: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:19 Di 11.09.2007
Autor: max3000

Wie sieht denn die Funktion [mm] f_{k} [/mm] aus?

Das wäre mal wichtig zu wissen.

Grüße
Max

Bezug
        
Bezug
Bestimmen von k: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Di 11.09.2007
Autor: ONeill

Generell sollst du folgendes ausrechnen:
[mm] \integral_{0}^{k}{f(k) dk}=\bruch{1}{e} [/mm]
Dazu integrierst du auf der linken Seite und kannst dann nach k umstellen. Um dir weiterzuhelfen benötigen wir aber f_(k).
Gruß ONeill

Bezug
                
Bezug
Bestimmen von k: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:09 Di 11.09.2007
Autor: hase-hh

Moin! Habe nochmal meinen Aufgabentext bearbeitet. Es geht im Prinzip nur um die Frage, wie man hier

  e = [mm] e^k [/mm] * (1 -ke +e)

nach k auflösen kann!

lg
wolfgang

Bezug
                        
Bezug
Bestimmen von k: probieren oder "sehen"
Status: (Antwort) fertig Status 
Datum: 21:24 Di 11.09.2007
Autor: Loddar

Hallo Wolfgang!


Ich sehe hier keine Möglichkeit einer geschlossenen Lösung, nach $k \ = \ ...$ umzustellen.

Da verbleibt entweder die Möglichkeit einer numerischen Lösung (z.B. durch MBNewton-Verfahren) oder einfach Probieren bzw. "scharfes Hinsehen".

So erhalte ich dann als Lösungskandidat $k \ = \ 1$ .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de