www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Bestimmtes Integral berechnen
Bestimmtes Integral berechnen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmtes Integral berechnen: Integration
Status: (Frage) beantwortet Status 
Datum: 21:40 Mi 06.02.2008
Autor: Imperator_Serhat

Aufgabe
Berechnen Sie das bestimmte Integral
[mm]\integral^{1}_{0}{\bruch{18x^{3}}{\wurzel{6x^{2}+3}}dx}[/mm]

Substituieren Sie den Radikanten.

Hallo Leute,

Hier habe ich großes Problem. Ich komme überhaupt nicht weiter.
Also Ich verwende die Substitutionsmethode und ersetze den Radikanten:

[mm]u=6x^{2}+3[/mm]

[mm]\bruch{du}{dx}=12x[/mm]

Dann forme ich nach dx um:

[mm]dx=\bruch{du}{12x}[/mm]

Setze nun u und dx in das Integral ein:

[mm]\integral^{1}_{0}{\bruch{18x^{3}}{\wurzel{u}}\bruch{du}{12x}}[/mm]
Kürze x gegen [mm] x^3 [/mm] und 18 gegen 12 und ziehe die multiplikativen konstanten vor das integral
[mm]\bruch{3}{2}\integral^{1}_{0}{\bruch{x^{2}}{\wurzel{u}}du}[/mm]

Und ab da weiss ich nun überhaupt nicht mehr, was Sache ist.
Frage 1: Ist der Gedanke bis hier hin richtig?
Frage 2: Ist Substitutuion überhaupt der richtige weg?
Frage 3: Wie geht es weiter?

Vielen Dank für die Hilfe im Voraus

        
Bezug
Bestimmtes Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Mi 06.02.2008
Autor: schachuzipus

Hallo Serhat,


> Berechnen Sie das bestimmte Integral
>  [mm]\integral^{1}_{0}{\bruch{18x^{3}}{\wurzel{6x^{2}+3}}dx}[/mm]
>  
> Substituieren Sie den Radikanten.
>  Hallo Leute,
>
> Hier habe ich großes Problem. Ich komme überhaupt nicht
> weiter.
>  Also Ich verwende die Substitutionsmethode und ersetze den
> Radikanten:
>  
> [mm]u=6x^{2}+3[/mm]
>  
> [mm]\bruch{du}{dx}=12x[/mm]
>  
> Dann forme ich nach dx um:
>  
> [mm]dx=\bruch{du}{12x}[/mm]
>  
> Setze nun u und dx in das Integral ein:
>  
> [mm]\integral^{1}_{0}{\bruch{18x^{3}}{\wurzel{u}}\bruch{du}{12x}}[/mm]
>  Kürze x gegen [mm]x^3[/mm] und 18 gegen 12 und ziehe die
> multiplikativen konstanten vor das integral
>  
> [mm]\bruch{3}{2}\integral^{1}_{0}{\bruch{x^{2}}{\wurzel{u}}du}[/mm] [daumenhoch]

fast perfekt bis hierhin - du musst an die Grenzen denken, entweder substituierst du die mit oder löst zuerst das unbestimmte Integral ohne Grenzen, resubstituierst dann und nimmst die alten Grenzen

Zur Umrechnung der Grenzen: die untere war x=0, das gibt mit der Substitution [mm] u=6x^2+3, [/mm] also [mm] u=6\cdot{}0^2+3=3 [/mm]

Analog für die obere Grenze...

>  
> Und ab da weiss ich nun überhaupt nicht mehr, was Sache
> ist.
>  Frage 1: Ist der Gedanke bis hier hin richtig? [ok]
>  Frage 2: Ist Substitutuion überhaupt der richtige weg? [ok]
>  Frage 3: Wie geht es weiter?

Ich mach's ohne die Grenzen, so dass du am Schluss resubstituieren musst und die alten Grenzen nehmen musst...

Mit der Substitution [mm] $u:=6x^2+3$ [/mm] ist doch, wenn du's umstellst: [mm] $x^2=\frac{u-3}{6}$ [/mm]

Also hast du das Integral [mm] $\bruch{3}{2}\integral{\bruch{x^{2}}{\wurzel{u}}du}=\bruch{3}{2}\integral{\bruch{\bruch{u-3}{6}}{\wurzel{u}}du}=\bruch{1}{4}\integral{\bruch{u-3}{\wurzel{u}}du}$ [/mm]

Nun das Integral als Summe zweier Integrale schreiben, die du bestimmt locker lösen kannst.


> Vielen Dank für die Hilfe im Voraus


LG

schachuzipus

Bezug
                
Bezug
Bestimmtes Integral berechnen: Substitution
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:04 Do 07.02.2008
Autor: Imperator_Serhat

Hallo Schauzipus,

danke für die Idee, genau die Info hat mir gefehlt gehabt.
Nun der vollständigkeitshalbe der Rest meiner Lösung:

[mm]\bruch{1}{4}(\integral{\bruch{u}{\wurzel{u}}}-3\integral{\bruch{1}{\wurzel{u}}})[/mm]

[mm]=\bruch{1}{4}(\integral{\bruch{\wurzel{u}\wurzel{u}}{\wurzel{u}}}-3\integral{\bruch{1}{\wurzel{u}}})[/mm]

[mm]=\bruch{1}{4}(\integral{\wurzel{u}}-3\integral{\bruch{1}{\wurzel{u}}})[/mm]

[mm]=\bruch{1}{4}(\bruch{2}{3}x^{\bruch{3}{2}}-3\cdot 2\cdot \wurzel{u})[/mm]

[mm]=\bruch{1}{4}(\bruch{2}{3}\wurzel{u}\cdot u - 6\wurzel{u})[/mm]

[mm]=\bruch{1}{6}\wurzel{u}\cdot u-\bruch{3}{2}\wurzel{u}[/mm]

u wieder rücksubstituiert, ein wenig umgeformt und zusammengefasst:

[mm]=(x^{2}-1)\wurzel{6x^{2}+3}[/mm]

Jetzt habe ich keine Lust mehr zu tippen, aber man müsste nur noch die Grenzen einsetzen und das Integral ausrechnen und FERTIG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de