www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Bestimmung Ableitungsfunktion
Bestimmung Ableitungsfunktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung Ableitungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:12 So 10.11.2013
Autor: leasarfati

Aufgabe
Skizzieren Sie für den gegebenen Graphen von f die Graphen von f' und f''.

Hallo,

ich kann leider nicht ein Bild von dem Graphen reinstellen, aber es ist auf jeden Fall keine quadratische oder lineare Funktion.

Wie muss ich jetzt als erstes vorgehen?

Vielen Dank für die Hilfe:))

        
Bezug
Bestimmung Ableitungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 So 10.11.2013
Autor: abakus


> Skizzieren Sie für den gegebenen Graphen von f die Graphen
> von f' und f''.
> Hallo,

>

> ich kann leider nicht ein Bild von dem Graphen reinstellen,
> aber es ist auf jeden Fall keine quadratische oder lineare
> Funktion.

>

> Wie muss ich jetzt als erstes vorgehen?

Hallo,
an Stellen mit waagerechten Tangenten hat die Ableitungsfunktion den Wert 0.
In monoton wachsenden Bereichen der Funktion hat die Ableitungsfunktion positive Werte (und an der steilsten Stelle den höchsten Wert).
In monoton fallenden Bereichen hat die Ableitungsfunktion negative Werte (und an der steilsten Stelle des fallenden Bereichs den negativsten Wert). 
Gruß Abakus
>

> Vielen Dank für die Hilfe:))

Bezug
                
Bezug
Bestimmung Ableitungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:34 So 10.11.2013
Autor: leasarfati

Also die Funktion hat an der Stelle (0/0) einen Sattelpunkt. Kann ich nicht eine Gleichung aufstellen und dann Punkte aus dem Graphen da einfügen und eine genaue Ableitungsfunktion berechnen?

Bezug
                        
Bezug
Bestimmung Ableitungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 So 10.11.2013
Autor: Richie1401

Hallo,

du sollst ja die Funktion nur skizzieren. Ich nehme an, du hast also gar keine Möglichkeit exakte Punkte abzulesen. Zumal du ja nicht einmal weißt, welcher Art die Funktion ist (vllt. ein Polynom vom 5. oder 7. Grad?). Wer weiß das schon.

Ausnutzen sollst du aber sicherlich die Kenntnis von bekannten Nullstellen. f' hat Nullstellen bei Extrempunkten von f. Außerdem weiß man wann f'<0 und wann f'>0 ist.

Leider kann ich deine Funktion nicht sehen. Somit ist schwer zu sagen, wie genau du vorgehen sollst.

Aber wegen der Aufgabenstellung von "Skizzieren" gehe ich nicht davon aus, dass  ein perfekter Kurvenverlauf verlangt ist.

Bezug
                        
Bezug
Bestimmung Ableitungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:04 So 10.11.2013
Autor: abakus


> Also die Funktion hat an der Stelle (0/0) einen
> Sattelpunkt.

Also berührt die Ableitungsfunktion an dieser Stelle die x-Achse nur, ohne sie zu schneiden.

> Kann ich nicht eine Gleichung aufstellen und
> dann Punkte aus dem Graphen da einfügen und eine genaue
> Ableitungsfunktion berechnen?

Hallo,
das ist nicht Sinn der Übung. Es geht um das VERSTÄNDNIS des Zusammenhangs zwischen dem Graphen der Funktion und dem Ableitungsgraphen.
Das erringt man nicht, wenn man ersatzweise irgendwas rechnet.
Gruß Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de