Bestimmung der Extrema < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
ich habe folgende Frage:
gibt es irgendeinen kürzeren Weg (eine Technik) in der Mathematik, für Funktionen der Art f:x-->x'Ax, wobei x ein n-dimensionaler Vektor, x' ihre Transponierte, und A irgendeine nxn-Koeffizientenmatrix ist, Nullstellen und Extremas zu bestimmen, ohne dass man die ganzen Terme miteinander ausmultiplizieren und dann mit einem extern langen Ausdruck arbeiten muss?
Ich würde mich sehr freuen, wenn jemand weiß, ob dies geht, wie das geht und in welche Lektüren die entsprechende Information dazu bieten.
Grüße.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:49 Do 15.08.2013 | Autor: | felixf |
Moin!
> ich habe folgende Frage:
>
> gibt es irgendeinen kürzeren Weg (eine Technik) in der
> Mathematik, für Funktionen der Art f:x-->x'Ax, wobei x ein
> n-dimensionaler Vektor, x' ihre Transponierte, und A
> irgendeine nxn-Koeffizientenmatrix ist, Nullstellen und
> Extremas zu bestimmen, ohne dass man die ganzen Terme
> miteinander ausmultiplizieren und dann mit einem extern
> langen Ausdruck arbeiten muss?
Ueberlege dir erstmal, dass du $A$ durch [mm] $\tfrac{1}{2} [/mm] (A + [mm] A^t)$ [/mm] ersetzen kannst, ohne dass sich etwas an der Funktion aendert. Diese Matrix ist auf jeden Fall symmetrisch.
Wenn $A$ symmetrisch ist, kannst du $A$ so diagonalisieren, dass die Eigenvektoren orthogonal aufeinander stehen und die Laenge 1 haben: die Transformationsmatrix $T$ mit $T A [mm] T^{-1} [/mm] = D$ (Diagonalmatrix) ist dann orthogonal, und es gilt [mm] $T^{-1} [/mm] = [mm] T^t$. [/mm] Damit ist $f(x) = [mm] x^t [/mm] A t = [mm] (x^t T^t) [/mm] T A [mm] T^t [/mm] (T x) = (T [mm] x)^t [/mm] D (T x)$. Ist $y = [mm] (y_1, \dots, y_n) [/mm] = T x$, dann ist $f(x)$ also gleich [mm] $\sum_{i=1}^n d_i y_i^2$, [/mm] wenn [mm] $d_1, \dots, d_n$ [/mm] die Diagonaleintraege von $D$ sind.
Aus $y = T x$ folgt $x = [mm] T^t [/mm] y$, womit du wenn du die Extrema von $g(y) = [mm] y^t [/mm] D y = [mm] \sum_{i=1}^n d_i y_i^2$ [/mm] kennst, daraus direkt die Extrema von $f$ bekommst.
Und die Extrema von $g(y) = [mm] \sum_{i=1}^n d_i y_i^2$ [/mm] bestimmen ueberlass ich jetzt dir :)
> Ich würde mich sehr freuen, wenn jemand weiß, ob dies
> geht, wie das geht und in welche Lektüren die
> entsprechende Information dazu bieten.
In jedem guten Buch oder Skript zur linearen Algebra sollte das drinnenstehen.
LG Felix
|
|
|
|
|
Vielen Dank für deine Antwort!
Das ist eine interessante Vorgehensweise!
Ich werde mir noch überlegen, ob das in meinem Fall tatsächlich einen effizienteren Lösungsweg darstellt.
Eine Frage hätte ich dazu aber noch:
Ganz am Anfang zerlegst du die Matrix A in die Summe von zwei Matrizen. Ist die Matrix A auf der rechten und linken Seite die gleiche Matrix oder nicht? Mir ist nicht ganz verständlich, warum du diese Zerlegung machst und später nirgendwo die Matrix At (A transponiert) auftaucht.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:32 Do 15.08.2013 | Autor: | felixf |
Moin!
> Eine Frage hätte ich dazu aber noch:
>
> Ganz am Anfang zerlegst du die Matrix A in die Summe von
> zwei Matrizen. Ist die Matrix A auf der rechten und linken
> Seite die gleiche Matrix oder nicht? Mir ist nicht ganz
> verständlich, warum du diese Zerlegung machst und später
> nirgendwo die Matrix At (A transponiert) auftaucht.
Ich mache folgendes:
* Ist $A$ symmetrisch, so kann man gleich mit den Eigenvektoren/Eigenwerten fortfahren.
* Ist $A$ nicht symmetrisch, so kann man $A$ durch [mm] $\tfrac{1}{2} [/mm] (A + [mm] A^t)$ [/mm] ersetzen. In dem Fall ist der Ausdruck der neue Wert von $A$, und die alte Matrix $A$ wird nicht mehr gebraucht.
LG Felix
|
|
|
|