www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Bestimmung des kgV / ggT
Bestimmung des kgV / ggT < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung des kgV / ggT: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:14 So 20.11.2011
Autor: misstamtam

Aufgabe
Bestimmen Sie jeweils alle n [mm] \in \IN [/mm] für die gilt:
kgv (n,22)=1188
ggT(3993,n)=363

Hallo,

zunächst einmal: ich studiere im ersten Semester u.a. Mathematik für die Grundschule, momentan mit der Thematik Arithmetik.
Insbesondere geht es momentan um die Berechnung des kgVs und des ggT- soweit, so gut. Ich habe verstanden, wie ich den kgV oder den ggT zweier oder mehrerer Zahlen durch Primfaktorzerlegung bestimmte. Nun habe ich aber eine Aufgabe mit einer Variable und weiß absolut nicht, wie ich das berechnen soll.
Ich würde mich sehr freuen, wenn ich ihr mir die nötigen Denkanstöße liefern würdet :)


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bestimmung des kgV / ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 09:50 So 20.11.2011
Autor: M.Rex

Hallo


> Bestimmen Sie jeweils alle n [mm]\in \IN[/mm] für die gilt:
>  kgv (n,22)=1188
>  ggT(3993,n)=363
>  Hallo,
>  
> zunächst einmal: ich studiere im ersten Semester u.a.
> Mathematik für die Grundschule, momentan mit der Thematik
> Arithmetik.
> Insbesondere geht es momentan um die Berechnung des kgVs
> und des ggT- soweit, so gut. Ich habe verstanden, wie ich
> den kgV oder den ggT zweier oder mehrerer Zahlen durch
> Primfaktorzerlegung bestimmte. Nun habe ich aber eine
> Aufgabe mit einer Variable und weiß absolut nicht, wie ich
> das berechnen soll.

Zu kgv (n,22)=1188:

Schlimmstenfalls ist das kgV zweier Zahlen das Produkt dieser beiden Zahlen, das passiert genau dann, wenn diese beiden Zahlen Teilerfremd sind.
Hier suchst du also eine Zahl m, für das gilt:
22n=1188, also n=54.
Über die Primfaktorzerlegung:
22=2·11
1188=2·2·3·3·3·11
Die in der 22 vorkommenden Primfaktoren streiche nun aus den Primfaktoren der 1188, die Multiplikation der restlichen gibt das gesuchte n.


Zum ggT(3993,n)=363

Auch hier wieder die Zerlegung in Primfaktoren:
3993 = 3·11·11·11
363 = 3·11·11

Streiche alle Primfaktoren der 363 aus denen der 3993 heraus, dann bleibt die 11 übrig. Teile die 3993 dann noch durch die 11, und du bekommst die Zahl für das n.
Rechnerisch: n=3993/363

Marius


Bezug
                
Bezug
Bestimmung des kgV / ggT: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:03 So 20.11.2011
Autor: misstamtam

Ich danke dir für die schnelle Antwort, muss aber zugeben, dass ich etwas irritiert bin - die Aufgabenstellung klang für mich so, als wäre eine "allgemeine Antwort" (wenn man das so sagen kann) erforderlich, also mit n und nicht unbedingt eine konkrete Zahl.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de