www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - Bestimmung e.ganzrat. Funktion
Bestimmung e.ganzrat. Funktion < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung e.ganzrat. Funktion: Ist das richtig so?
Status: (Frage) beantwortet Status 
Datum: 16:23 So 29.01.2006
Autor: splin

Aufgabe
Bestimme eine ganzrationale Funktion vierten Grades, so daß für den Graphen der Funktion gilt:
T(2;4) ist relativer Tiefpunkt, W(0;0) Wendepunkt und
die Wendetangente hat die Steigung 1.

Ich habe die Aufgabe gelöst und folgende Funktion bestimmt:
[mm] ax^4 [/mm] + [mm] bx^3 [/mm] + [mm] cx^2 [/mm] + dx + e
[mm] a=\bruch{1}{4};b= [/mm] - [mm] \bruch{3}{4}; [/mm] c=0 ; d=1;e=0
[mm] \Rightarrow f(x)=\bruch{1}{4}x^4 [/mm] - [mm] \bruch{3}{4}x^3 [/mm] + x

Die Probe hat auch gepasst bis auf die Überprüfung von Funktionswerten des Wendepunkts W(2;4); da habe ich [mm] f(2)\not=4. [/mm]

Antwort: die gesuchte Funktion existiert nicht.

Ist das richtig so? Oder habe ich mich vertan?


















        
Bezug
Bestimmung e.ganzrat. Funktion: a und b falsch
Status: (Antwort) fertig Status 
Datum: 16:41 So 29.01.2006
Autor: Loddar

Hallo splin!


Ich habe hier einen eindeutige Lösung ermitteln können. Dabei habe ich für $a_$ und $b_$ andere Werte erhalten.

Wie lauten denn Deine Bestimmungsgleichungen?


Kontrollergebnis (bitte nachrechnen): $f(x) \ = \ [mm] -\bruch{1}{2}x^4+\bruch{5}{4}x^3+x$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Bestimmung e.ganzrat. Funktion: Wo liegt mein Fehler?
Status: (Frage) beantwortet Status 
Datum: 20:41 So 29.01.2006
Autor: splin

Wo habe ich mein Fehler? Ich habe folgernerweise gerechnet:
Die f hat einen Wendepunkt (0;0)  [mm] \Rightarrow [/mm]  f´´(0)=0
[mm] \Rightarrow [/mm] c=0
Die f hat einen WP (0;0)  [mm] \Rightarrow [/mm]  f(0)=0
[mm] \Rightarrow [/mm] e=0
Die Wendetangente in 0 hat die Steigung 1 [mm] \Rightarrow [/mm] f'(0)=1
[mm] \Rightarrow [/mm] d=1
Die f hat einen Tiefpunkt T(2;4)  [mm] \Rightarrow [/mm] f'(2)=0
[mm] \Rightarrow [/mm] 32a+12b+1=0 - erste Bestimmungsgleichung
Die f hat einen T(2;4)  [mm] \Rightarrow [/mm] f(2)=4
[mm] \Rightarrow [/mm] 16a+8b+2=0 - zweite Bestimmungsgleichung
Nachdem ich die beide aufgelöst, habe ich [mm] a=\bruch{1}{4} [/mm] und [mm] b=-\bruch{3}{4} [/mm]
[mm] \Rightarrow [/mm] f(x)= [mm] \bruch{1}{4}x^4- \bruch{3}{4}x^3+x. [/mm]

Kann mir jemand mein Fehler erklären?








> Hallo splin!
>  
>
> Ich habe hier einen eindeutige Lösung ermitteln können.
> Dabei habe ich für [mm]a_[/mm] und [mm]b_[/mm] andere Werte erhalten.
>  
> Wie lauten denn Deine Bestimmungsgleichungen?
>  
>
> Kontrollergebnis (bitte nachrechnen): [mm]f(x) \ = \ -\bruch{1}{2}x^4+\bruch{5}{4}x^3+x[/mm]
>  
>
> Gruß
>  Loddar
>  

Bezug
                        
Bezug
Bestimmung e.ganzrat. Funktion: Schusselfehler
Status: (Antwort) fertig Status 
Datum: 20:51 So 29.01.2006
Autor: Loddar

Hallo splin!


> Die f hat einen T(2;4)  [mm]\Rightarrow[/mm] f(2)=4
> [mm]\Rightarrow[/mm] 16a+8b+2=0

Es muss heißen: $16a+8b +2 \ = \ [mm] \red{4}$ [/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de