www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Beträge b. Int. von $\frac1x$
Beträge b. Int. von $\frac1x$ < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beträge b. Int. von $\frac1x$: ..schulpraktischer Zweck?
Status: (Frage) beantwortet Status 
Datum: 11:55 Sa 20.04.2013
Autor: Riesenradfahrrad

Beitrag nach Bearbeitung:

Hallo!

wahrscheinlich habt schon oft gehört oder selber gepredigt:
[mm] $\int\frac1x\mathrm dx=|\ln [/mm] x|+c$ - vergiss bloss nicht den Betrag!!!

Nun gebe ich zu diesem "Vergessen" mal meinen Gedanken:

wir betrachten die [mm] $\ln$-Funktion [/mm] mit komplexem Argument:
[mm] $$\ln(z) [/mm] = [mm] \ln(|z|e^{i\varphi})=\ln(|z|)+\ln(e^{i\varphi})=\ln(|z|)+ i\varphi$$ [/mm]  
[mm] $\varphi$ [/mm] ist eine reelle Zahl, also ist [mm] $i\varphi$ [/mm] eine imaginäre Zahl, und es gilt:
[mm] $$\ln(|z|) [/mm] + c = [mm] \ln(z),\quad\text{wobei $c$ eine imaginäre Zahl ist}.$$ [/mm]
Wählen wir nun
[mm] $$d=i\varphi+r,\quad r\in\mathbb [/mm] R$$
in
[mm] $$\int \frac1z\mathrm dz=\ln(|z|) +d\quad d\in\mathbb [/mm] C$$
so ergibt sich doch völlig legitim
[mm] $$\int \frac1z\mathrm dz=\ln(|z|) +d=\ln(z)+r=:F(z)$$ [/mm]
Und da dies für komplexe Argument gilt, so muss dies doch auch für reelle Argumente gelten.

Lange Rede, Sinn meiner Behauptung: [mm] $F(x)=\ln(x)$ [/mm] - auch ohne Betrag - ist eine mögliche Stammfunktion von [mm] $f(x)=\frac1x$. [/mm]

Was meint ihr dazu?


        
Bezug
Beträge b. Int. von $\frac1x$: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 Sa 20.04.2013
Autor: fred97


> Hallo!
>  
> wahrscheinlich habt schon oft gehört oder selber
> gepredigt:
>  [mm]\int\frac1x\mathrm dx=|\ln x|+c[/mm] - vergiss bloss nicht den
> Betrag!!!

Ja, aber bitte an der richtigen Stelle !!!  Also:

[mm]\int\frac1x\mathrm dx=\ln |x|+c[/mm]


>  
> Nun gebe ich zu diesem "Vergessen" mal meinen Gedanken:
>  
> wir betrachten die [mm]\ln[/mm]-Funktion mit komplexem Argument:
> [mm]\ln(z) = \ln(|z|e^{i\varphi})=\ln(|z|)+\ln(e^{i\varphi})=\ln(|z|)+ i\varphi[/mm]

Im Komplexen ist ln mehrdeutig ! Ist [mm] \varphi [/mm] ein Argument von z, so bekommst Du alle Log. von z durch

[mm]\ln(z) =\ln(|z|)+ i\varphi+ 2k \pi *i[/mm]   (k [mm] \in \IZ) [/mm]


>  
> [mm]\varphi[/mm] ist eine reelle Zahl, also ist [mm]i\varphi[/mm] eine
> imaginäre Zahl, und es gilt:
>  [mm]\ln(|x|) + c = \ln(x),\quad\text{wobei $c$ eine imaginäre Zahl ist}.[/mm]

Ja, was jetzt ? x [mm] \in \IR [/mm] ? oder z [mm] \in \IC [/mm] ? Ist jetzt z=x


>  




Ab jetzt wirds (für mich ) völlig unverständlich !

> Wählen wir nun
>  [mm]d=-i\varphi+r,\quad r\in\mathbb R[/mm]
>  in
>  [mm]\int \frac1x\mathrm dx=\ln(x) +d\quad d\in\mathbb C[/mm]
>  so
> ergibt sich doch völlig legitim
>  [mm]\int \frac1x\mathrm dx=\ln(x) +d=:F(x)[/mm]
> mit [mm]F(x)[/mm] als reellwertiger Funktion -?
>  Die Integrationskonstante kann also dieStamm-Funktion in
> zwei Dimensionen verschieben:
> 1. zum einen in [mm]y[/mm]-Richtung
>  2. vom reellen ins komplexe
>  
> In der Schule wird das 2. demnach nicht berücksichtigt und
> sogar leider als falsch deklariert! - oder mache ich hier
> selber nen Fehler?


Da blick ich nicht mehr durch. Wäre es möglich, dass Du Dich klar ausdrückst ?

>  
> Was meint ihr dazu?

Machen wirs kurz:

In [mm] \IR [/mm] \ { 0 } hat die Funktion 1/x die Stammfunktionen ln(|x|) +c

In [mm] \IC [/mm] \ { 0 } hat die Funktion 1/z keine Stammfunktion.


FRED

>  


Bezug
                
Bezug
Beträge b. Int. von $\frac1x$: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:28 Sa 20.04.2013
Autor: Riesenradfahrrad

Hallo Fred,

vielen Dank für rasche! Antwort.
Ich habe versucht, mich verständlicher auszudrücken, und den Beitrag bearbeitet.

Frage bleibt für mich:

Ist $F(x)=ln(x)$ eine mögliche Stammfunktion von [mm] $f(x)=\frac1x$?? [/mm]



Bezug
                        
Bezug
Beträge b. Int. von $\frac1x$: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 Sa 20.04.2013
Autor: fred97


> Hallo Fred,
>  
> vielen Dank für rasche! Antwort.
>  Ich habe versucht, mich verständlicher auszudrücken, und
> den Beitrag bearbeitet.
>
> Frage bleibt für mich:
>  
> Ist [mm]F(x)=ln(x)[/mm] eine mögliche Stammfunktion von
> [mm]f(x)=\frac1x[/mm]??

Ja, für x>0

FRED

>  
>  


Bezug
                                
Bezug
Beträge b. Int. von $\frac1x$: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:02 Sa 20.04.2013
Autor: Riesenradfahrrad


> > Frage bleibt für mich:
>  >  
> > Ist [mm]F(x)=ln(x)[/mm] eine mögliche Stammfunktion von
> > [mm]f(x)=\frac1x[/mm]??
>  
> Ja, für x>0
>  

..mmh... also ich find das alles gar nicht so trial.
Es scheint doch wohl so zu sein, dass man sehr wohl über ganz [mm] $\mathbb [/mm] R$ (außer 0) integrieren kann, die Stammfunktion aber nur für x>0 reellwertig ist. Demnach dürfte ein Schüler im Abitur die Antwort [mm] "$\ln(x)$ [/mm] ist eine Stammfunktion von [mm] $\frac1x$" [/mm] geben - [mm] \textit{ohne} [/mm] erwähnen zu müssen: $x>0$.
  


Bezug
                                        
Bezug
Beträge b. Int. von $\frac1x$: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 Sa 20.04.2013
Autor: fred97

Wir betrachte die Funktion f(x):=1/x  für x [mm] \ne [/mm] 0

f hat auf (0, [mm] \infty) [/mm] die Stammfunktion ln(x)

f hat auf ( - [mm] \infty, [/mm] 0) die Stammfunktion ln(-x)

Fazit:

f hat auf [mm] \IR [/mm] \ { 0 } die Stammfunktion ln(|x|)

Jetzt klar ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de