www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Betrag in ln
Betrag in ln < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Betrag in ln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:07 Mo 23.05.2011
Autor: Wieselwiesel

Aufgabe
[mm] \integral{\bruch{1}{x} dx} [/mm] = ln(|x|)

Ich hätte eine allgemeine Frage zur Integration von Brüchen. Ich weiss dass wenn man einen solchen Bruch wie in der Angabe integriert, der Logarithmus rauskommt. Aber warum genau muss es der Logarithmus vom Betrag sein? Mir is klar, negative Zahlen kann man nicht logarithmieren. Aber gibts irgendeine Erklärung dafür warum man nach dem Integrieren den Betrag nimmt?

        
Bezug
Betrag in ln: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Mo 23.05.2011
Autor: chrisno

Berechne mal [mm] $\int_{-3}^{-2}\bruch{1}{x}dx$ [/mm]

Bezug
                
Bezug
Betrag in ln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Mo 23.05.2011
Autor: Wieselwiesel

ist ln(|-2|)-ln(|-3|) oder [mm] ln(\bruch{2}{3}). [/mm] Rechnen kann ichs ja, aber ich hätte gerne eine Erklärung dafür, nicht nur einfach hinnehmen dass es so ist. Es geht mir darum, ich habe bald eine Prüfung, und möchte für jede Frage gewappnet sein. Und im Moment kann ich nicht beantworten warum der Betrag genommen wird.

Bezug
                        
Bezug
Betrag in ln: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Mo 23.05.2011
Autor: abakus


> ist ln(|-2|)-ln(|-3|) oder [mm]ln(\bruch{2}{3}).[/mm] Rechnen kann
> ichs ja, aber ich hätte gerne eine Erklärung dafür,
> nicht nur einfach hinnehmen dass es so ist. Es geht mir
> darum, ich habe bald eine Prüfung, und möchte für jede
> Frage gewappnet sein. Und im Moment kann ich nicht
> beantworten warum der Betrag genommen wird.

Hallo,
mache dir Folgendes klar:
Eine differenzierbare Funktion ist genau dann symmetrisch zur y-Achse, wenn  ihre Ableitung ursprungssymmetrisch ist.
Gruß Abakus


Bezug
        
Bezug
Betrag in ln: Antwort
Status: (Antwort) fertig Status 
Datum: 09:54 Di 24.05.2011
Autor: fred97


> [mm]\integral{\bruch{1}{x} dx}[/mm] = ln(|x|)
>  Ich hätte eine allgemeine Frage zur Integration von
> Brüchen. Ich weiss dass wenn man einen solchen Bruch wie
> in der Angabe integriert, der Logarithmus rauskommt. Aber
> warum genau muss es der Logarithmus vom Betrag sein? Mir is
> klar, negative Zahlen kann man nicht logarithmieren. Aber
> gibts irgendeine Erklärung dafür warum man nach dem
> Integrieren den Betrag nimmt?

Es ist ln(|x|)= ln(x) für x>0. Jetzt differenziere. Was kommt raus ?

Es ist ln(|x|)= ln(-x) für x<0. Jetzt differenziere. Was kommt raus ?

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de