www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Betragsfunktion
Betragsfunktion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Betragsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:39 Mi 17.08.2011
Autor: hula

Moinmoin

Wir sollen folgende Funktion untersuchen und eine Aussage über die Differenzierbarkeit in 0 finden:

[mm] f(x) = |x|^t,\forall t>1 \in \IR [/mm]

Wie oben bereits erwähnt ist ja die einzige kritische Stelle 0. Wenn ich diesen Grenzwert einmal hinschreibe:

[mm] \limes_{x\rightarrow 0} \bruch{|x|^t - 0^t}{x-0}= \limes_{x\rightarrow 0} \bruch{|x|^t}{x} [/mm]

Dann würde ich de L'Hôpital verwenden:

[mm] \limes_{x\rightarrow 0} t |x|^{t-1}\bruch{x}{|x|} [/mm]

Naja....jetzt würde ich wie folgt argumentieren: Der Bruch ist ja beschränkt, je nachdem ob ich von links oder rechts komme ist er -1 oder +1. Da $\ t > 1 $ strebt der vordere Teil gegen 0. Also ist die Funktion in 0 differenzierbar mit Ableitung 0. Stimmen mein Beweis, meine Argumentation?

greetz


hula

        
Bezug
Betragsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:50 Mi 17.08.2011
Autor: reverend

Moin Hula,

> Wir sollen folgende Funktion untersuchen und eine Aussage
> über die Differenzierbarkeit in 0 finden:
>  
> [mm]f(x) = |x|^t,\forall t>1 \in \IR[/mm]
>  
> Wie oben bereits erwähnt ist ja die einzige kritische
> Stelle 0. Wenn ich diesen Grenzwert einmal hinschreibe:
>  
> [mm]\limes_{x\rightarrow 0} \bruch{|x|^t - 0^t}{x-0}= \limes_{x\rightarrow 0} \bruch{|x|^t}{x}[/mm]
>  
> Dann würde ich de L'Hôpital verwenden:
>  
> [mm]\limes_{x\rightarrow 0} t |x|^{t-1}\bruch{x}{|x|}[/mm]

[ok]

> Naja....jetzt würde ich wie folgt argumentieren: Der Bruch
> ist ja beschränkt, je nachdem ob ich von links oder rechts
> komme ist er -1 oder +1. Da [mm]\ t > 1[/mm] strebt der vordere Teil
> gegen 0. Also ist die Funktion in 0 differenzierbar mit
> Ableitung 0. Stimmen mein Beweis, meine Argumentation?

Ja, sieht gut aus. [daumenhoch]

Grüße
reverend


Bezug
        
Bezug
Betragsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:08 Mi 17.08.2011
Autor: chrisno

Ich frage, warum Du den Umweg über L' Hospital gehen musst. Kannst Du nicht direkt den Limes mit Fallunterscheidung für den Betrag betrachten?

Bezug
        
Bezug
Betragsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:15 Mi 17.08.2011
Autor: fred97


> Moinmoin
>  
> Wir sollen folgende Funktion untersuchen und eine Aussage
> über die Differenzierbarkeit in 0 finden:
>  
> [mm]f(x) = |x|^t,\forall t>1 \in \IR[/mm]
>  
> Wie oben bereits erwähnt ist ja die einzige kritische
> Stelle 0. Wenn ich diesen Grenzwert einmal hinschreibe:
>  
> [mm]\limes_{x\rightarrow 0} \bruch{|x|^t - 0^t}{x-0}= \limes_{x\rightarrow 0} \bruch{|x|^t}{x}[/mm]
>  
> Dann würde ich de L'Hôpital verwenden:
>  
> [mm]\limes_{x\rightarrow 0} t |x|^{t-1}\bruch{x}{|x|}[/mm]

Wie kommst Du dadrauf ??


Mach es so:  da t>1, ist t=s+1 mit s>0. Dann:

        [mm] \limes_{x\rightarrow 0} \bruch{|x|^t}{x}= \limes_{x\rightarrow 0} \bruch{|x|^s*|x|}{x}= \bruch{|x|}{x}\limes_{x\rightarrow 0}|x|^s=0, [/mm]

denn [mm] \bruch{|x|}{x} [/mm] ist beschränkt.

FRED


>  
> Naja....jetzt würde ich wie folgt argumentieren: Der Bruch
> ist ja beschränkt, je nachdem ob ich von links oder rechts
> komme ist er -1 oder +1. Da [mm]\ t > 1[/mm] strebt der vordere Teil
> gegen 0. Also ist die Funktion in 0 differenzierbar mit
> Ableitung 0. Stimmen mein Beweis, meine Argumentation?
>
> greetz
>  
>
> hula


Bezug
                
Bezug
Betragsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:19 Mi 17.08.2011
Autor: reverend

Hallo Fred,

> > [mm]\limes_{x\rightarrow 0} \bruch{|x|^t - 0^t}{x-0}= \limes_{x\rightarrow 0} \bruch{|x|^t}{x}[/mm]
>  
> >  

> > Dann würde ich de L'Hôpital verwenden:
>  >  
> > [mm]\limes_{x\rightarrow 0} t |x|^{t-1}\bruch{x}{|x|}[/mm]
>  
> Wie kommst Du dadrauf ??

Alles Ableitung des Zählers mit Kettenregel. [mm] \bruch{x}{|x|} [/mm] ist die Ableitung von |x|. Ist doch keine schlechte Idee, oder?

Grüße
reverend


Bezug
                        
Bezug
Betragsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:02 Fr 19.08.2011
Autor: hula

Würde mich auch interessieren. Sind meine Überlegungen falsch? Die Ableitung der Betragsfunktion existiert ja ausser in 0. Aber den Fall will ich ja gerade behandeln.

greetz

hula

Bezug
                                
Bezug
Betragsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:09 Sa 20.08.2011
Autor: fred97


> Würde mich auch interessieren. Sind meine Überlegungen
> falsch?


Nein

FRED


> Die Ableitung der Betragsfunktion existiert ja
> ausser in 0. Aber den Fall will ich ja gerade behandeln.
>
> greetz
>  
> hula


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de