www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Betragsgleichung
Betragsgleichung < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Betragsgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:05 Mi 23.10.2013
Autor: elacs

Folgende Aufgabe soll nach x aufgelöst werden:
|x-4|=|2x+3|

Mein Ansatz ist es nun die Beträge mit x >= 4 aufzulösen:
x-4=2x+3

Nach umformen erhalte ich dann:
x=-7.

Dies entspricht auch der Aufgaben-Lösung in meinem Übungsheft.
Aber x ist doch jetzt nicht >= 4 sonder kleiner.
Wieso ist -7 dennoch richtig?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Betragsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 Mi 23.10.2013
Autor: Marcel

Hallo,

> Folgende Aufgabe soll nach x aufgelöst werden:
>  |x-4|=|2x+3|
>  
> Mein Ansatz ist es nun die Beträge mit x >= 4
> aufzulösen:
>  x-4=2x+3
>  
> Nach umformen erhalte ich dann:
>  x=-7.
>  
> Dies entspricht auch der Aufgaben-Lösung in meinem
> Übungsheft.
>  Aber x ist doch jetzt nicht >= 4 sonder kleiner.
>  Wieso ist -7 dennoch richtig?

nein, da ist was verloren gegangen:
1. Fall: Sei $x [mm] \ge 4\,,$ [/mm] dann ... folgt (wie bei Dir), dass nur $x=-7$ die Gleichung
lösen würde. Wegen $-7 [mm] \not \ge [/mm] 4$ hat die Gleichung also keine Lösung im
Falle $x [mm] \ge 4\,.$ [/mm]

Es gibt aber noch andere Fälle, die zu betrachten sind:
Für $x < [mm] 4\,$ [/mm] kann man zwei Unterfälle betrachten:
Fall 2a): Sei $-1,5 [mm] \le [/mm] x < [mm] 4\,.$ [/mm]
Fall 2b): Sei $x < [mm] -1,5\,.$ [/mm]

Im Falle 2b) ist dann klar, dass dort die Lösung [mm] $x=-7\,$ [/mm] rauskommen wird (klar
ist das mit obiger Rechnung), denn hier gilt:

    $|x-4|=|2x+3|$ [mm] $\iff$ [/mm] $-(x-4)=-(2x+3)$

und multiplizierst Du die letzte Gleichung mit [mm] $-1\,,$ [/mm] so geht das rechnerisch
in das über, was Du im ersten Fall gesehen hast.

P.S. Ein alternativer Lösungsweg:
Beide Seiten der Gleichung

   $|x-4|=|2x+3|$

sind [mm] $\ge 0\,.$ [/mm] Daher ist die Gleichung äquivalent zu der, wenn man sie quadriert
($x=y$ [mm] $\iff$ $x^2=y^2$ [/mm] ist richtig, wenn [mm] $x,y\,$ [/mm] das gleiche Vorzeichen haben - aber:
Wenn verschiedene Vorzeichen möglich sind, dann kann man aus [mm] $x^2=y^2$ [/mm] nur
[mm] $(x+y)*(x-y)=0\,,$ [/mm] also $x=y$ ODER $x=-y$ folgern):

    $|x-4|=|2x+3|$ [mm] $\iff$ $|x-4|^2=|2x+3|^2$ $\iff$ $(x-4)^2=(2x+3)^2\,.$ [/mm]

Rechnest Du weiter, so kommst Du zur gleichwertigen Gleichung

    [mm] $3x^2+20x-7=0$ $\iff$ $x^2+\frac{20}{3}x-\frac{7}{3}=0\,.$ [/mm]

Damit wegen MBPQFormel

    [mm] $x_{1,2}=-\frac{10}{3}\pm\frac{\sqrt{10^2+3*7}}{3}=-\frac{10}{3}\pm\frac{11}{3}\,.$ [/mm]

Also [mm] $x_1=-21/3=-7$ [/mm] und [mm] $x_2=1/3\,.$ [/mm] (Den Wert von [mm] $x_2$ [/mm] solltest Du auch im
Fall 2b) rechnerisch ermitteln können!)

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de