www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Bevölkerungswachstum
Bevölkerungswachstum < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bevölkerungswachstum: Tipp, Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:17 Di 24.03.2015
Autor: Haifisch21

Aufgabe
Die Tabelle zeigt das Bevölkerugswachstum eines Landes in den 5 Jahren von 2000 bis 2004 an (Angaben in Millionen Einwohnern). Das Jahr 2000 sei das Startjahr der Beobachtung (t=0), das Jahr 2001 das erste usw.

Kalendejahr                      2000    2001     2002      2003        2004
Zeit t in Jahren s. 2000          0           1          2             3              4
Einwohner E in Millionen         10,00    10,40    10,82      11,25       11,70

(1) Prüfe, ob exponentielles Wachstum vorliegt, gegebenfalls Bestimmung von Wachstumsfaktor a auf zwei Dezimalstellen genau. Aufstellen der allgemeinen Wachstumsgleichung nach [mm] E(t)=E0*e^{k*t}. [/mm] Den Faktor k auf 6 Dezimalstellen runden!

(2) Bestimmen Sie die Einwohnerzahl in den Jahren 1990 und 2010! Wann hatte das Land 7,5 Mio EInwohner, wann wird es 15,0 Mio Einwohner haben? Geben Sie Verdoppelungszeit und Verdreifachungszeit an!

(3) Zu welchem Zeitpunkt wird der järhliche Zuwachs der Einwohnerzahl genau eine Million Menschen betragen?



Hey ihr,
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
vielleicht könnt ihr mir helfen, danke!!
(1) Ja es liegt exp. Wachstum vor (Quotienten gleich), Wachstumsfaktor a=1,04.
[mm] E(t)=10,00*e^{k*t} [/mm]
Dann habe ich die folgende Gleichung nach k gelöst:
[mm] 10,40=10,00*e^{k*t} [/mm]
k=0,039221
--> [mm] E(t)=10,00*e^{0,039221*t} [/mm]

(2) mit der entsprechenden Gleichung hatte das Land vor 7,3349 Jahren 7,5 Mio Einwohner, also Mitte des Jahres 1992. Das Land wird in 10,388 Jahren 15,0 Mio Einwohner haben, also ca. im April 2010.
Stimmt das?
Verdoppelungszeit liegt bei 17,6729 Jahren, die Verdreifachungszeit bei 28,0108 Jahren.

(3) Könntet ihr mir zu drittens eventuell einen Tipp geben, ich bin etwas ratlos..
DANKE!!!! (:

        
Bezug
Bevölkerungswachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Di 24.03.2015
Autor: MathePower

Hallo Haifisch21,

> Die Tabelle zeigt das Bevölkerugswachstum eines Landes in
> den 5 Jahren von 2000 bis 2004 an (Angaben in Millionen
> Einwohnern). Das Jahr 2000 sei das Startjahr der
> Beobachtung (t=0), das Jahr 2001 das erste usw.
>  
> Kalendejahr                      2000    2001     2002      
> 2003        2004
>  Zeit t in Jahren s. 2000          0           1          2
>             3              4
>  Einwohner E in Millionen         10,00    10,40    10,82  
>    11,25       11,70
>  
> (1) Prüfe, ob exponentielles Wachstum vorliegt,
> gegebenfalls Bestimmung von Wachstumsfaktor a auf zwei
> Dezimalstellen genau. Aufstellen der allgemeinen
> Wachstumsgleichung nach [mm]E(t)=E0*e^{k*t}.[/mm] Den Faktor k auf 6
> Dezimalstellen runden!
>  
> (2) Bestimmen Sie die Einwohnerzahl in den Jahren 1990 und
> 2010! Wann hatte das Land 7,5 Mio EInwohner, wann wird es
> 15,0 Mio Einwohner haben? Geben Sie Verdoppelungszeit und
> Verdreifachungszeit an!
>  
> (3) Zu welchem Zeitpunkt wird der järhliche Zuwachs der
> Einwohnerzahl genau eine Million Menschen betragen?
>  
>
> Hey ihr,
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  vielleicht könnt ihr mir helfen, danke!!
>  (1) Ja es liegt exp. Wachstum vor (Quotienten gleich),
> Wachstumsfaktor a=1,04.
>  [mm]E(t)=10,00*e^{k*t}[/mm]
>  Dann habe ich die folgende Gleichung nach k gelöst:
>  [mm]10,40=10,00*e^{k*t}[/mm]
>  k=0,039221
>  --> [mm]E(t)=10,00*e^{0,039221*t}[/mm]

>  
> (2) mit der entsprechenden Gleichung hatte das Land vor
> 7,3349 Jahren 7,5 Mio Einwohner, also Mitte des Jahres
> 1992. Das Land wird in 10,388 Jahren 15,0 Mio Einwohner
> haben, also ca. im April 2010.
>  Stimmt das?
>  Verdoppelungszeit liegt bei 17,6729 Jahren, die
> Verdreifachungszeit bei 28,0108 Jahren.
>


Bis hierhin ist alles richtig. [ok]


> (3) Könntet ihr mir zu drittens eventuell einen Tipp
> geben, ich bin etwas ratlos..


Betrachte die Ableitung von E(t).


> DANKE!!!! (:  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de