Bew.: Gleichmäßige Konvergenz < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei X ein metrischer Raum. Seien [mm] (f_n)_{n \in \IN} [/mm] und [mm] (g_n)_{n \in \IN} [/mm] Folgen in C(X) (dies ist der Raum der stetigen, beschränkten Funktionen von X in [mm] \IC). [/mm] Die Folge [mm] (f_n)_{n \in \IN} [/mm] konvergiere gleichmäßig gegen f und die Folge [mm] (g_n)_{n \in \IN} [/mm] konvergiere gleichmäßig gegen g.
Zeigen Sie, dass [mm] (f_n g_n)_{n \in \IN} [/mm] gleichmäßig gegen fg konvergiert.
Hinweis: [mm] \parallel fg-f_n g_n \parallel [/mm] = [mm] \parallel f(g-g_n) [/mm] + [mm] (f-f_n)g_n \parallel [/mm] |
Hallo!
Es ist zu zeigen: [mm] \parallel f(g-g_n)+(f-f_n)g_n \parallel \le \epsilon
[/mm]
Bin mit dem Hinweis gestartet:
[mm] \parallel f(g-g_n)+(f-f_n)g_n \parallel
[/mm]
= [mm] \parallel [/mm] f [mm] \parallel \cdot \parallel g-g_n\parallel [/mm] + [mm] \parallel f-f_n \parallel \cdot \parallel g_n \parallel
[/mm]
(Da [mm] (f_n)_{n \in \IN} [/mm] und [mm] (g_n)_{n \in \IN} [/mm] gleichmäßig konvergieren gilt:)
[mm] \le \parallel [/mm] f [mm] \parallel \cdot \epsilon_1 [/mm] + [mm] \epsilon_2 \cdot \parallel g_n \parallel
[/mm]
Mein nächster Gedanke war, dass ich f und [mm] f_n [/mm] abschätzen kann, da sie beschränkt sind.
Seien [mm] m_1 [/mm] obere Schranke von [mm] \parallel [/mm] f [mm] \parallel [/mm] und [mm] m_2 [/mm] obere Schranke von [mm] \parallel g_n \parallel.
[/mm]
[mm] \le m_1 \cdot \epsilon_1 [/mm] + [mm] m_2 \cdot \epsilon_2 [/mm] := [mm] \epsilon
[/mm]
Hier bin ich mir unsicher. Darf ich das Epsilon so definieren? Denn damit würde es ja von [mm] m_1 [/mm] und [mm] m_2 [/mm] abhängen oder?
Vielen Dank schonmal!
Liebe Grüße, WiebkeMarie
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:37 Fr 21.05.2010 | Autor: | statler |
Hallo!
> Sei X ein metrischer Raum. Seien [mm](f_n)_{n \in \IN}[/mm] und
> [mm](g_n)_{n \in \IN}[/mm] Folgen in C(X) (dies ist der Raum der
> stetigen, beschränkten Funktionen von X in [mm]\IC).[/mm] Die Folge
> [mm](f_n)_{n \in \IN}[/mm] konvergiere gleichmäßig gegen f und die
> Folge [mm](g_n)_{n \in \IN}[/mm] konvergiere gleichmäßig gegen g.
>
> Zeigen Sie, dass [mm](f_n g_n)_{n \in \IN}[/mm] gleichmäßig gegen
> fg konvergiert.
> Hinweis: [mm]\parallel fg-f_n g_n \parallel[/mm] = [mm]\parallel f(g-g_n)[/mm]
> + [mm](f-f_n)g_n \parallel[/mm]
> Es ist zu zeigen: [mm]\parallel f(g-g_n)+(f-f_n)g_n \parallel \le \epsilon[/mm]
>
> Bin mit dem Hinweis gestartet:
>
> [mm]\parallel f(g-g_n)+(f-f_n)g_n \parallel[/mm]
> = [mm]\parallel[/mm] f
> [mm]\parallel \cdot \parallel g-g_n\parallel[/mm] + [mm]\parallel f-f_n \parallel \cdot \parallel g_n \parallel[/mm]
>
> (Da [mm](f_n)_{n \in \IN}[/mm] und [mm](g_n)_{n \in \IN}[/mm] gleichmäßig
> konvergieren gilt:)
>
> [mm]\le \parallel[/mm] f [mm]\parallel \cdot \epsilon_1[/mm] + [mm]\epsilon_2 \cdot \parallel g_n \parallel[/mm]
>
> Mein nächster Gedanke war, dass ich f und [mm]f_n[/mm] abschätzen
> kann, da sie beschränkt sind.
> Seien [mm]m_1[/mm] obere Schranke von [mm]\parallel[/mm] f [mm]\parallel[/mm] und [mm]m_2[/mm]
> obere Schranke von [mm]\parallel g_n \parallel.[/mm]
>
> [mm]\le m_1 \cdot \epsilon_1[/mm] + [mm]m_2 \cdot \epsilon_2[/mm] :=
> [mm]\epsilon[/mm]
>
> Hier bin ich mir unsicher. Darf ich das Epsilon so
> definieren? Denn damit würde es ja von [mm]m_1[/mm] und [mm]m_2[/mm]
> abhängen oder?
Das [mm] \varepsilon [/mm] ist vorgegeben, suchen mußt du die beiden [mm] \varepsilon_i. [/mm] Aber dafür kannst du z. B. [mm] \varepsilon_1 [/mm] := [mm] \bruch{\varepsilon}{2m_1} [/mm] (oder kleiner) nehmen.
Noch genauer suchst du zu dem gegebenen [mm] \varepsilon [/mm] ein [mm] n_0 [/mm] so, daß für alle ....
Frohe Pfingsten aus HH-Harburg
Dieter
|
|
|
|
|
Super danke!
Jetzt hab ichs verstanden. Klar gleichmäßige Konvergenz heißt ja es gilt für alle, also kann ich mir auch welche wählen...
Danke!! ;)
|
|
|
|