www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Bewegung, Affinität
Bewegung, Affinität < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bewegung, Affinität: Idee, Lösung
Status: (Frage) beantwortet Status 
Datum: 18:20 Di 15.01.2013
Autor: dany1995

Aufgabe
Sei [mm] \IR^{n} [/mm] ein euklidischer affiner Raum. Zeigen Sie, dass jede Bewegung [mm] \beta [/mm] von [mm] \IR^{n} [/mm] eine Affinität der Form [mm] \beta(x)= [/mm] Mx+t ist, wobei M [mm] \in [/mm] O(n) und t [mm] \in \IR^{n}. [/mm]
O(n) ist hier die Menge orthogonaler Matrizen.

Ich vorbereite mich gerade für meine Klausur in Geometrie.
Leider habe ich mit folgender Aufgabe Schwirigkeiten.
Irgendwie sind Beweisaufgaben nicht meine Sache.
Ich weiß einfach nicht wie ich anfangen soll und auch nicht wie....
Kann mir irgendjemand helfen  bitte, bitte  :-(
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bewegung, Affinität: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:10 Di 15.01.2013
Autor: Rob22

Ich würde zeigen, dass jede euklidische Bewegung, die den Nullpunkt festhält äquivalent dazu ist, dass diese durch Multiplikation von links mit einer orthogonalen Matrix gegeben ist. Dann kannst du dir die Komposition ansehen einer Translation und der Bewegung. Betrachte mal die Abbildung [mm] \beta(x)=Ax+b, [/mm] dann weißt du auch schon was b ist. Konstruiere nun mit dieser Kenntnis eine zusammengesetzte eukl. Bewegung, die den Nullpunkt festhält. Wenn ihr dann Ersteres bereits in der Vl hattet, dann kannst du damit folgern oder du musst es noch zeigen.

gruß



Bezug
                
Bezug
Bewegung, Affinität: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:12 Mi 16.01.2013
Autor: Rob22

Wenn du es nicht siehst, dann solltest du deine Abbildung als Komposition des linearen Teils und der Translation beschreiben. Zeige nun für diese Verknüpfung, dass diese das Skalarprodukt erhält, also [mm] \IR [/mm] -linear ist. Dies ist nach Linearer Algebra äquivalent dazu, dass deine Komposition orthogonal ist [mm] \gdw [/mm] Deine Matrix ist orthogonal bez. der Basiswechselmatrix mit einer Orthonormalbasis. Dann umschreibe dieses zu deiner beliebigen Bewegung und du bist fertig. Falls notwendig musst du zeigen, dass die Komposition von 2 Bewegungen auch eine Bewegung ist. Solltet ihr einen Satz haben, der die Bewegungen auf eine Gruppe zurückführt, dann sollte das schon reichen (würde ich aber erwähnen). Meistens hat man auch einen Satz, der sagt, dass die Spalten einer Matrix eine Orthonormalbasis bilden äquivalent dazu ist, dass die Matrix orthogonal ist.

gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de