www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Bewegungen
Bewegungen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bewegungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:48 Do 23.07.2009
Autor: Unk

Aufgabe
Mit [mm] $\mathcal{B}(1)$ [/mm] bezeichnen wir die Bewegungsgruppe des euklid'schen
Raums [mm] $\mathbb{R}^{1}.$ [/mm]

Einige Elemente sind:

[mm] $t_{a}$ [/mm] mit [mm] $t_{a}(x)=x+a,\,\,\,\forall a\in\mathbb{R},$ [/mm] $r$ mit
$r(x)=-x.$

Zeigen Sie: [mm] $\mathcal{B}(1)=\{t_{a},t_{a}r|a\in\mathbb{R}\}$ [/mm] und
diese Elemente sind paarweise verschieden.

Hallo,

dass die Elemente paarweise verschieden sind ist mir schon klar, denn
es gilt [mm] $t_{a}r(x)=t_{a}(-x)=-x+a,$ [/mm] d.h. doch aber, dass sie nur
für [mm] $x\neq0$ [/mm] paarweise verschieden sind, oder?

Naja die Bewegungsgruppe enthält alle uneigentlichen und alle eigentlichen
Bewegungen. Eine Bewegung besteht aus einer orthogonalen Abbildung
und einer Translation. Nun befinde ich mich aber nur in [mm] $\mathbb{R},$ [/mm]
wie soll ich da orthogonale Abbildung interpretieren, und warum ist
$x$ dann eine solche?

        
Bezug
Bewegungen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:34 Do 23.07.2009
Autor: Al-Chwarizmi


> Mit [mm]\mathcal{B}(1)[/mm] bezeichnen wir die Bewegungsgruppe des
> euklid'schen
>  Raums [mm]\mathbb{R}^{1}.[/mm]
>  
> Einige Elemente sind:
>  
> [mm]t_{a}[/mm] mit [mm]t_{a}(x)=x+a,\,\,\,\forall a\in\mathbb{R},[/mm] [mm]r[/mm] mit
>  [mm]r(x)=-x.[/mm]
>  
> Zeigen Sie: [mm]\mathcal{B}(1)=\{t_{a},t_{a}r|a\in\mathbb{R}\}[/mm]
> und
>  diese Elemente sind paarweise verschieden.
>  Hallo,
>  
> dass die Elemente paarweise verschieden sind ist mir schon
> klar, denn
>  es gilt [mm]t_{a}r(x)=t_{a}(-x)=-x+a,[/mm] d.h. doch aber, dass sie
> nur
>  für [mm]x\neq0[/mm] paarweise verschieden sind, oder?
>  
> Naja die Bewegungsgruppe enthält alle uneigentlichen und
> alle eigentlichen
>  Bewegungen. Eine Bewegung besteht aus einer orthogonalen
> Abbildung
>  und einer Translation. Nun befinde ich mich aber nur in
> [mm]\mathbb{R},[/mm]
>  wie soll ich da orthogonale Abbildung interpretieren, und
> warum ist
>  [mm]x[/mm] dann eine solche?


Rechte Winkel gibt es in [mm] \IR^1 [/mm] offensichtlich nicht.
Insofern ist der Begriff "orthogonale Abbildung" hier
zumindest irritierend. Was aber noch geblieben ist,
ist die Längenmessung. Eine orthogonale Abbildung
muss auch längentreu sein, d.h. im [mm] \IR^1: [/mm] Für eine
"orthogonale" Abbildung [mm] f:\IR\to\IR [/mm] und für zwei
beliebige Werte [mm] x_1, x_2\in\IR [/mm] muss stets gelten:

     $\ [mm] |f(x_2)-f(x_1)|\ [/mm] =\ [mm] |x_2-x_1|$ [/mm]
  
Dafür kommen natürlich nur lineare Funktionen
der Form   $\ f(x)=m*x+b$  mit  $\ |m|=1$  in Frage.
Mit anderen Worten:  m=1 oder m=-1.
Diejenigen Funktionen f mit Det(f)=m=1
ergeben die "eigentlichen" Bewegungen
bzw. die Translationen des [mm] \IR^1 [/mm] .
Jene mit Det(f)=m=-1 ergeben die "uneigent-
lichen" Bewegungen (Spiegelungen) des [mm] \IR^1 [/mm] .


LG    Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de