www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Graphentheorie" - Beweis Baum min2Ecken min2Kant
Beweis Baum min2Ecken min2Kant < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Baum min2Ecken min2Kant: Aufgabe3
Status: (Frage) beantwortet Status 
Datum: 19:01 Mi 19.12.2007
Autor: Kar_o

Aufgabe
Jeder Baum mit mindestens 2Knoten hat mindestens 2 Blätter.

Also ich denke hier muss ich zunächst beweisen , dass mein Graph G kreifrei und zusammenhängen ist, weil erst dann weiß ich dass ich auch von einem Baum ausgehen kann. Oder?
Und Dann würde ich einfach an eines der beiden Blätter ein weiteres dranhängen und dann zeigen, dass es immer noch ein Baum ist. Stimmt die Richtung bei meinen Überlegungen?
Problem ist wie scheibe ich (insbesondere den 2.Teil) auf?
Hilfe ich hab das Gefühl ich werd irre!

        
Bezug
Beweis Baum min2Ecken min2Kant: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Mi 19.12.2007
Autor: Zneques

Hallo,

Also wenn das deine gesammte Aufgabe ist, dann hast du bereits einen Baum vorgegeben und sollst nun zeigen, dass für mindestens 2Knoten auch mindestens 2 Blätter vorhanden sind.
Kreisfrei und zusammenhängend sind natürlich die Eigenschaften die man dafür benötigt.
Angenommen es stimmt nicht. Wie würde denn ein Baum mit meheren Knoten und nur einen (/keinen) Blatt aussehen ?

(Wenn du einfach ein weiteres Blatt dranhängst, beweist du nur, dass ein Baum nach hinzufügen eines weiteren Blattes immernoch ein Baum ist. Auch nicht schlecht. ;) )

Ciao.

Bezug
                
Bezug
Beweis Baum min2Ecken min2Kant: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 Mi 19.12.2007
Autor: Kar_o

Wie würde denn ein Baum mit meheren Knoten und nur einen (/keinen) Blatt aussehen ?
            
Mehrere Knoten und nur ein/kein Blatt geht doch gar nicht ohne nicht irgendwo nen Kreis bilden zu müssen, weil man ja immer irgendwo am Ende einen Knoten hat der nicht mit einem dritten Knoten in verbinudng steht. Oder?

Bezug
                        
Bezug
Beweis Baum min2Ecken min2Kant: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 Mi 19.12.2007
Autor: Zneques

Genau so ist es !

Das heißt es gibt keine Bäume mit 2 oder mehr Knoten die nur ein/kein Blatt haben.
Somit hat jeder Baum mit mindestens 2 Knoten mindestens 2 Blätter.

Das alles noch etwas netter formulieren und es ist dann dein Beweis.

Ciao.

Bezug
                                
Bezug
Beweis Baum min2Ecken min2Kant: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:33 Mi 19.12.2007
Autor: Kar_o

Ja aber wie schreibe ich das nett, einfach in Sätzen oder wie?

Bezug
                                        
Bezug
Beweis Baum min2Ecken min2Kant: Antwort
Status: (Antwort) fertig Status 
Datum: 02:15 Do 20.12.2007
Autor: Zneques

Du musst dein "geht doch gar nicht" noch genauer begründen.
Zum Beispiel so :

Sei B ein Baum mit mindestens 2 Knoten.

1) Angenommen B hat kein Blatt. Dann bilden wir einen Pfad mit Start in einen beliebigen Knoten, indem wir immer einen Knoten hizufügen, der nicht der vorletzte Knoten war. Ein solcher muss existieren, da es keine Blätter gibt, und somit jeder Knoten min. 2 Nachbarn hat. Weil der Pfad endlos wird, gibt es irgendwann einen Knoten der sich wiederholt. Damit enthält der Pfad, also auch B einen Kreis.
Widerspruch !

2) Angenommen B hat genau ein Blatt. Dann bilden wir einen Pfad, der mit dem Blatt und dessen Nachbarn startet. Danach setzen diesen Pfad wie bei 1) fort und erhalten einen Kreis.
Widerspruch !

[mm] \Rightarrow [/mm] B hat mindestens 2 Blätter.

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de