www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Beweis Bedingungen für sup
Beweis Bedingungen für sup < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Bedingungen für sup: Korrektur
Status: (Frage) beantwortet Status 
Datum: 05:34 Sa 30.11.2013
Autor: Cccya

Aufgabe
Sei X ⊂ R eine nach oben beschränkte Menge, und sei Y ⊂ R die Menge aller oberen
Schranken von X. Sei s ∈ R. Beweisen Sie: Genau dann ist s = sup X, wenn es Folgen (xn)
in X und (yn) in Y mit der Eigenschaft limn→∞ xn = s und limn→∞ yn = s gibt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Mein Lösungsansatz:

Angenommen s = sup X, dann gibt es eine Folge xn > s-(1/n) mit n Element N und xn Element X. Denn wenn es diese Folge nicht gäbe wäre s-(1/n)< s = sup X schon eine obere Schranke von X. Es gilt also s-(1/n) < xn <= s ,
weil xn nach Definition kleiner gleich s = sup X sein muss.
Einschnürungsprinzip --> lim s- (1/n) = lim xn = lim s = s
Analog für yn : Es gibte eine Folge yn < s+ (1/n)  mit n Element N und yn Element Y. Eine solche Folge existiert weil sonst s+(1/n) > s = sup X  die kleinste obere Schranke wäre.
Dann s <= yn < s+ (1/n) und lim s = lim yn = lim s+(1/n) = s

Andere Richtung: Angenommen es existieren Folgen xn und yn mit lim xn = lim yn = s und xn Element X und yn Element Y. Dann gibt es nach Vorraussetzung eine kleinste obere Schranke von X, die s'heiße.
s'ist die größte untere Schranke von Y. Der Grenzwert einer Folge in X kann maximal s'sein, sonst wäre s'keine kleinste obere Schranke von X. Der Grenzwert einer Folge in Y kann minimal s'sein sonst wäre s'keine größte untere Schranke von Y. Also kann der Grenzwert von zwei Folgen xn und yn mit xn Element X und yn Element Y nur in s'übereinstimmen. Nach Vorraussetzung existieren Folgen xn und yn mit lim xn = lim yn = s also muss s = s'= sup X sein.

Ist dieser Beweis ausreichend und korrekt? Besonders beim 2. Teil bin ich mir unsicher, muss ich z.B. noch beweisen, dass s'größte untere Schranke von Y ist?

        
Bezug
Beweis Bedingungen für sup: Antwort
Status: (Antwort) fertig Status 
Datum: 08:10 Sa 30.11.2013
Autor: fred97


> Sei X ⊂ R eine nach oben beschränkte Menge, und sei Y
> ⊂ R die Menge aller oberen
>  Schranken von X. Sei s ∈ R. Beweisen Sie: Genau dann ist
> s = sup X, wenn es Folgen (xn)
>  in X und (yn) in Y mit der Eigenschaft limn→∞ xn = s
> und limn→∞ yn = s gibt.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Mein Lösungsansatz:
>
> Angenommen s = sup X, dann gibt es eine Folge xn > s-(1/n)
> mit n Element N und xn Element X. Denn wenn es diese Folge
> nicht gäbe wäre s-(1/n)< s = sup X schon eine obere
> Schranke von X. Es gilt also s-(1/n) < xn <= s ,
>  weil xn nach Definition kleiner gleich s = sup X sein
> muss.
>  Einschnürungsprinzip --> lim s- (1/n) = lim xn = lim s =

> s
>  Analog für yn : Es gibte eine Folge yn < s+ (1/n)  mit n
> Element N und yn Element Y. Eine solche Folge existiert
> weil sonst s+(1/n) > s = sup X  die kleinste obere Schranke
> wäre.
> Dann s <= yn < s+ (1/n) und lim s = lim yn = lim s+(1/n) =
> s

>

Prima

  

> Andere Richtung: Angenommen es existieren Folgen xn und yn
> mit lim xn = lim yn = s und xn Element X und yn Element Y.
> Dann gibt es nach Vorraussetzung eine kleinste obere
> Schranke von X, die s'heiße.
>  s'ist die größte untere Schranke von Y. Der Grenzwert
> einer Folge in X kann maximal s'sein, sonst wäre s'keine
> kleinste obere Schranke von X.

Ab hier kannst Du abkürzen:

es ist [mm] x_n \le [/mm] s' [mm] \le y_n [/mm] für alle n.

Mit dem Einschnürungssatz folgt s=s'

FRED



> Der Grenzwert einer Folge in
> Y kann minimal s'sein sonst wäre s'keine größte untere
> Schranke von Y. Also kann der Grenzwert von zwei Folgen xn
> und yn mit xn Element X und yn Element Y nur in
> s'übereinstimmen. Nach Vorraussetzung existieren Folgen xn
> und yn mit lim xn = lim yn = s also muss s = s'= sup X
> sein.
>
> Ist dieser Beweis ausreichend und korrekt? Besonders beim
> 2. Teil bin ich mir unsicher, muss ich z.B. noch beweisen,
> dass s'größte untere Schranke von Y ist?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de