www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Beweis: Dreiecksungleichung
Beweis: Dreiecksungleichung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis: Dreiecksungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:13 So 23.07.2006
Autor: algebra1

Aufgabe
Beweise die verschärfte Dreiecksungleichung

|  [mm] \parallel [/mm] x  [mm] \parallel [/mm] -  [mm] \parallel [/mm] y  [mm] \parallel [/mm] |  [mm] \le \parallel [/mm] x  [mm] \pm [/mm] y [mm] \parallel [/mm] für x,y [mm] \in \IR^{n} [/mm]

Hallo,

ich komme bei obiger Aufgabe nicht so recht weiter. Hier soll man sicher die Cauchy-Schwarzsche Ungleichung verwenden, die da lautet:

| <x,y> [mm] |^{2} \le \parallel [/mm] x [mm] \parallel^{2} [/mm] * [mm] \parallel [/mm] y [mm] \parallel^{2} [/mm]


Wie beweise ich das sauber?



Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Beweis: Dreiecksungleichung: Falsch formuliert
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Mo 24.07.2006
Autor: Gnometech

Grüße!

Leider hat sich bei der Formulierung der Aufgabe ein Fehler eingeschlichen... es muss natürlich heißen

$| [mm] \| [/mm] x [mm] \| [/mm] - [mm] \| [/mm] y [mm] \| [/mm] | [mm] \geq \| [/mm] x [mm] \pm [/mm] y [mm] \|$ [/mm]

Sonst wäre die Aussage für $x = -y [mm] \not= [/mm] 0$ ja offensichtlich falsch.

Noch ein Tipp: Du kannst o.B.d.A. annehmen, dass [mm] $\| [/mm] x [mm] \| \geq \| [/mm] y [mm] \|$ [/mm] gilt und dann nur [mm] $\| [/mm] x [mm] \| [/mm] - [mm] \| [/mm] y [mm] \| \geq \| [/mm] x + y [mm] \|$ [/mm] beweisen... das - im rechten Term kann einfach durch Ersetzung von $y$ durch $-y$ erreicht werden, was an der linken Seite nichts ändert.

Viel Glück,

Lars

Bezug
                
Bezug
Beweis: Dreiecksungleichung: Richtig formuliert
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:50 Mo 24.07.2006
Autor: SEcki


> [mm]| \| x \| - \| y \| | \geq \| x \pm y \|[/mm]

Nein, das ist offensichtlich falsch, setze [m]x=y[/m],

> Sonst wäre die Aussage für [mm]x = -y \not= 0[/mm] ja offensichtlich
> falsch.

Dann steht da [m]0=0[/m].

SEcki

Bezug
                        
Bezug
Beweis: Dreiecksungleichung: Hm...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:18 Di 25.07.2006
Autor: Gnometech

Hm, hast Recht, weiß auch nicht, was mich da geritten hat, so einen Blödsinn zu schreiben...

Sorry...

Lars

Bezug
        
Bezug
Beweis: Dreiecksungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 Mo 24.07.2006
Autor: SEcki


> ich komme bei obiger Aufgabe nicht so recht weiter. Hier
> soll man sicher die Cauchy-Schwarzsche Ungleichung
> verwenden, die da lautet:

Nein, die Aussage gilt für beliebige Normen, niocht nur die mit einem Skalarprodukt ...

Du brauchst blos die Dreickungleichung verwenden beachte zB [m]x=x\pm y\mp y[/m].

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de