www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Beweis, Erwartungswert Varianz
Beweis, Erwartungswert Varianz < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis, Erwartungswert Varianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:22 Sa 26.04.2008
Autor: p1ko

Aufgabe
Erwartungswert bzw. Varianz einer stetigen Zufallsgröße X mit der Dichte f(x) sind definiert als: [mm] E(X)=\integral_{-\infty}^{\infty}{x*f(x) dx} [/mm] bzw. [mm] V(X)=\integral_{-\infty}^{\infty}{(x-E(X))^{2}*f(x) dx}. [/mm]
a) Zeigen Sie, dass für eine exponential verteilte Zufallsgröße X gilt: [mm] E(X)=\bruch{1}{\lambda} [/mm] und [mm] V(X)=\bruch{1}{\lambda^{2}}. [/mm]
Beachten Sie, dass f(x)=0 für x<0 zu setzen ist.

b)Bestimmen Sie die Halbwertszeit für eine exp. verteilte Zufallsgröße mit Parameter [mm] \lambda. [/mm]
Wieso ist deren Erwartungswert deutlich größer als die Halbwertszeit?

Zu a) Nachdem ich partiell integriert und die Grenzen eingefügt habe, kam bei mir [mm] -\infty [/mm] raus. Ich habe weder Fehler bei den Umformungen gefunden, noch beim Integrieren und bin ratlos, denn man muss ja am Ende auf das [mm] \bruch{1}{\lambda} [/mm] kommen.

Paar Rechenschritte die ich hatte:

Partiell intergriert:
[mm] [x*\bruch{\lambda}{-\lambda}*e^{-\lambda*x}]_{-\infty}^{\infty}-\integral_{-\infty}^{\infty}{\bruch{\lambda}{-\lambda}*e^{-\lambda*x} dx} [/mm]
Abgeleitet & Umgeformt:
[mm] -\bruch{1}{\lambda}*[x*\lambda*e^{-\lambda*x}]_{-\infty}^{\infty}-\bruch{1}{\lambda}*[e^{-\lambda*x}]_{-\infty}^{\infty} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis, Erwartungswert Varianz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:47 Sa 26.04.2008
Autor: zahllos

Hallo,

du musst die Voraussetzung f(x) = 0 für x < 0 beachten!


Bezug
                
Bezug
Beweis, Erwartungswert Varianz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:03 So 27.04.2008
Autor: p1ko

ja nach ner stunde rumgrübeln ist uns das auch aufgefallen. Wir haben schließlich beim umformen geguckt, dass wir für das einsetzen die form [mm] "\lambda*e^{-\lambda*x} [/mm] hatten und beim einsetzen von [mm] -\infty [/mm] immer gleich 0 hingeschrieben (weil [mm] f(x)=c*e^{-\lambda*x} [/mm] und [mm] c=\lambda). [/mm] Vielleicht haben wir das mit dem f(x)=0 falsch verstanden. Aber eigentlich waren wir (ich und ein mathe LK freund) eigentlich sicher, dass das so gemeint war ^^ Bedeutet das denn dass man für [mm] \lambda*e^{-\lambda*x} [/mm] einfach immer null einsetzt bei der "Abgeleiteten & Umgeformten" Form die ich oben aufgeschrieben habe oder soll man das gleich als untere Grenze für [mm] -\infty [/mm] setzen?


Bezug
        
Bezug
Beweis, Erwartungswert Varianz: Untere Grenze
Status: (Antwort) fertig Status 
Datum: 10:30 So 27.04.2008
Autor: Infinit

Hallo p1ko,
prinzipiell liegt man mit Minus Unendlich als untere Grenze auf der sicheren Seite, es hängt aber natürlich von der Art der Verteilung ab, für welche reellen Werte die Dichte überhaupt von Null verschieden ist. Bei der Exponentialverteilung ist die Dichte nun mal Null für negative Werte und damit ist Null die untere Grenze.
Viele Grüße,
Infinit


Bezug
        
Bezug
Beweis, Erwartungswert Varianz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:27 Mo 28.04.2008
Autor: p1ko

Hey,

nachdem ich am sonntag nochmal 6h+ lang gerechnet habe, hab ichs endlich hingekriegt :)... die a) ging mit der unteren grenze 0 recht flott ... Hatte dann Schwierigkeiten mit der Varianz, aber nachdem ich meine zwei fehler nach stundenlangem suchen gefunden habe, die ich beim umformen&integrieren gemacht habe, hatte ich am ende endlich [mm] \bruch{1}{\lambda²} [/mm] raus :). Danke für die schnelle Hilfe, musste es nämlich bis heute lösen und der klasse vorstellen ^^ :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de