www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Beweis Injektivität
Beweis Injektivität < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Injektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:34 Di 19.10.2010
Autor: Wesen

Aufgabe
Beweisen Sie: Seien f:A [mm] \to [/mm] B und g: B [mm] \to [/mm] C Abbildungen. Wenn beide Abbildungen injektiv (surjektiv, bijektiv) sind, so gilt das auch für g [mm] \circ [/mm] f.

Hallo,
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe bei meiner ersten Frage hier im Forum festgestellt, das mir wirklich konstruktive Dinge gesagt worden sind, die mir wirklich sehr weiter geholfen haben, so hoffe ich auch dieses mal auf einen kleinen Anstoß. Da ich leider 2 Jahre mein Studium unterbrechen musste tue ich mich zur Zeit mit dem reinkommen etwas schwer.

Ich habe mir darüber Gedanken gemacht. Mir ist klar was es bedeutet, aber ich weiß trotzdem einfach nicht wie ich anfangen muss.


        
Bezug
Beweis Injektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Di 19.10.2010
Autor: schachuzipus

Hallo Wesen,


> Beweisen Sie: Seien f:A [mm]\to[/mm] B und g: B [mm]\to[/mm] C Abbildungen.
> Wenn beide Abbildungen injektiv (surjektiv, bijektiv) sind,
> so gilt das auch für g [mm]\circ[/mm] f.
>  Hallo,
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Ich habe bei meiner ersten Frage hier im Forum
> festgestellt, das mir wirklich konstruktive Dinge gesagt
> worden sind, die mir wirklich sehr weiter geholfen haben,
> so hoffe ich auch dieses mal auf einen kleinen Anstoß. Da
> ich leider 2 Jahre mein Studium unterbrechen musste tue ich
> mich zur Zeit mit dem reinkommen etwas schwer.

Nun, am besten ist es, sich erstmal die Definitionen nochmal anzusehen und zu verinnerlichen.

Wenn man die verstanden hat, ist alles halb so wild ;-)

Ich mach's mal für die Injektivität.

Seien also [mm]f,g[/mm] wie oben gegeben und beide injektiv.

Zuerst überlege, von wo nach wo [mm]g\circ f[/mm] abbildet.

[mm]g\circ f[/mm], gelesen g nach f, also wird zuerst f angewendet, dann g

Also [mm]g\circ f:A\overset{f}{\longrightarrow} B\overset{g}{\longrightarrow} C[/mm]

Also bildet die Verkettung [mm]g\circ f[/mm] ab von [mm]A[/mm] nach [mm]C[/mm]

Zu zeigen ist also, dass für alle [mm]x_1,x_2\in A[/mm] mit [mm](g\circ f)(x_1)=(g\circ f)(x_2)[/mm] gilt: [mm]x_1=x_2[/mm]

Dazu benutze die Def. von [mm] \circ [/mm] und die Inj. von f und g

[mm](g\circ f)(x_1)=(g\circ f)(x_2)\gdw g(f(x_1))=g(f(x_2))[/mm]

Nun ist g injektiv, also folgt: [mm]f(x_1)=f(x_2)[/mm]

Zudem ist f injektiv, also folgt hieraus [mm]x_1=x_2[/mm]

Insgesamt ist also [mm]g\circ f[/mm] injektiv


>  
> Ich habe mir darüber Gedanken gemacht. Mir ist klar was es
> bedeutet, aber ich weiß trotzdem einfach nicht wie ich
> anfangen muss.


Nun hast du ein "Muster".

Probiere mal, wie du weiterkommst ...

Gruß

schachuzipus


Bezug
                
Bezug
Beweis Injektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 So 24.10.2010
Autor: Wesen

Ich habe  es jetzt für die surjektivität bewiesen, weiß aber leider nicht wie ich es bei der bijektiviät machen soll. Bijektiv ist es ja wenn es surjektiv und injektiv ist, aber ich denke nicht das die Antwort so einfach wäre sondenr das ich bestimmt einen Beweis führen muss

Bezug
                        
Bezug
Beweis Injektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 So 24.10.2010
Autor: schachuzipus

Hallo nochmal,


> Ich habe  es jetzt für die surjektivität bewiesen, weiß
> aber leider nicht wie ich es bei der bijektiviät machen
> soll. Bijektiv ist es ja wenn es surjektiv und injektiv
> ist, aber ich denke nicht das die Antwort so einfach wäre
> sondenr das ich bestimmt einen Beweis führen muss

[hae]

Ich verstehe dein Problem nicht: richtig sagst du:

bijektiv=inj.+surj.

surj. hast du bewiesen (sagst du), inj. habe ich in der Antwort bewiesen.

Wo ist das Problem?

Was willst du noch mehr zeigen?

Gruß

schachuzipus


Bezug
                                
Bezug
Beweis Injektivität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:16 So 24.10.2010
Autor: Wesen

Hm, ich sehe wahrscheinlich Probleme wo keine sind, weil ich mir nicht vorstellen kann das es damit jetzt getan sein soll, aber eigentlich dachte ich eben auch das es eigentlich ja fertig sein müsste wenn ich nun sage das bijektiv ja eigentlich aus den vorhergehenden Beweisen folgt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de