www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Beweis Inkreisradius
Beweis Inkreisradius < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Inkreisradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:19 Di 06.06.2006
Autor: Alex85

Aufgabe
Beweisen Sie den folgenden Satz über den Inkreisradius rechtwinkliger Dreiecke:  r=1/2*(a+b-c)

Hi,
wäre super, wenn mir jemand diesen Satz des Inkreisradius beweisen könnte:
r=1/2*(a+b-c)

Ich komm da einfach nicht weiter!!!
Gruß Alex
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis Inkreisradius: Nachfrage
Status: (Antwort) fertig Status 
Datum: 12:08 Di 06.06.2006
Autor: informix

Hallo Alex udn [willkommenmr],
> Beweisen Sie den folgenden Satz über den Inkreisradius
> rechtwinkliger Dreiecke:  r=1/2*(a+b-c)
>  Hi,
>  wäre super, wenn mir jemand diesen Satz des Inkreisradius
> beweisen könnte:
>  r=1/2*(a+b-c)
>  
> Ich komm da einfach nicht weiter!!!

Aber ein wenig den Zusammenhang aufschreiben, in dem diese Aufgabe steht, ist doch nicht zu viel verlangt, oder?
Sollen a, b und c die Seitenlängen des Dreiecks sein?
Warum setzt du diese Aufgabe ins Schülerforum Vektorrechnung, wenn keine Vektoren gemeint?! [verwirrt]

Gruß informix



Bezug
        
Bezug
Beweis Inkreisradius: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 Di 06.06.2006
Autor: Leopold_Gast

1. Beweismöglichkeit

Der Inkreis eines beliebigen Dreiecks berührt die Seiten [mm]a,b,c[/mm] in - der Reihe nach - den Punkten [mm]X,Y,Z[/mm]. Die Strecken sind Tangenten an den Kreis. Daher sind die Abstände von [mm]A[/mm] zu [mm]Y[/mm] bzw. [mm]Z[/mm] gleich (Streckenlänge [mm]x[/mm]), ebenso die von [mm]B[/mm] zu [mm]X[/mm] bzw. [mm]Z[/mm] (Streckenlänge [mm]y[/mm]) und die von [mm]C[/mm] zu [mm]X[/mm] bzw. [mm]Y[/mm] (Streckenlänge [mm]z[/mm]). Es besteht daher das folgende lineare Gleichungssystem in den Unbekannten [mm]x,y,z[/mm] mit [mm]a,b,c[/mm] als Parametern:

[mm]x+y = c[/mm]
[mm]y+z = a[/mm]
[mm]z+x = b[/mm]

Wenn du dieses löst, wirst du [mm]z = \frac{1}{2} (a+b-c)[/mm] herausbekommen. Genau dieser Term tritt aber in deiner Formel auf. Wenn du jetzt zusätzlich Rechtwinkligkeit bei [mm]C[/mm] voraussetzt, dann ist [mm]WXCY[/mm] ein Quadrat ([mm]W[/mm]=Inkreismittelpunkt=Schnittpunkt der Winkelhalbierenden) und daher [mm]z[/mm] der gesuchte Inkreisradius.


2. Beweismöglichkeit

Wenn du in einem beliebigen Dreieck vom Inkreismittelpunkt [mm]W[/mm] aus die Strecken zu den Ecken [mm]A,B,C[/mm] zeichnest, so zerfällt dieses in drei Teildreicke, in denen der Inkreisradius [mm]r[/mm] jeweils Höhe auf eine Seite ist. Wenn du die Flächeninhalte der drei Dreiecke addierst, bekommst du den Flächeninhalt [mm]F[/mm] des Dreiecks [mm]ABC[/mm] und damit die Formel

[mm]F = \frac{1}{2} (a+b+c) r[/mm]

Und wenn man jetzt wieder Rechtwinkligkeit bei [mm]C[/mm] unterstellt, gilt andererseits auch

[mm]F = \frac{1}{2} ab[/mm]

Gleichstellen der beiden Ausdrücke liefert dir eine Formel für [mm]r[/mm] im Spezialfall der Rechtwinkligkeit. Nach [mm]r[/mm] auflösen, den Bruch mit [mm]a+b-c[/mm] erweitern und im Nenner ausmultiplizieren. Und dann gibt es da noch den alten Griechen aus Samos ...


3. Beweismöglichkeit

...


4. Beweismöglichkeit

...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de