www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Beweis Minimum
Beweis Minimum < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Minimum: Beweis
Status: (Frage) beantwortet Status 
Datum: 16:14 Mo 26.01.2009
Autor: Bleistiftkauer

Aufgabe
Seien a,b [mm] \in \IR [/mm] mit a < b für das gilt f(X) = k+1
Zeigen sie: ist f''(x) > 0, so besitzt f in x ein Minimum.

Hab keine ahnung wie ich das beweisen soll! hoffe dass einer mir helfen kann!

        
Bezug
Beweis Minimum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Mo 26.01.2009
Autor: djmatey

Hallo,

da kommen aber ganz schön viele Variablen vor, die da nicht hingehören... Was sollen denn a, b und dort? Hängt die Funktion von k ab oder von x, oder beides?

LG djmatey

Bezug
                
Bezug
Beweis Minimum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Mo 26.01.2009
Autor: Bleistiftkauer

ach vergessen: ]a,b[--> /IR

Bezug
                        
Bezug
Beweis Minimum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Mo 26.01.2009
Autor: djmatey

Hallo,

was ist denn k?
Falls k konstant ist, ist jede Ableitung konstant 0, dann macht die Aufgabe keinen Sinn.
Falls du meinst
f(x) = x+1
ist die 2. Ableitung ebenfalls gleich 0, macht auch keinen Sinn.

Wenn ich mal von hinten anfange und f''(x) > 0 voraussetze, finde ich sofort ein Gegenbeispiel mit
f''(x) = 2
f'(x) = 2x
f(x) = [mm] x^2 [/mm]

Dann müsste [mm] x^2 [/mm] an allen Stellen x ein Minimum haben, was natürlich Käse ist.
Ich vermute, die Aufgabenstellung ist nicht vollständig!?

LG djmatey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de