www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Beweis Modulorechnung
Beweis Modulorechnung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Modulorechnung: Potenzen
Status: (Frage) beantwortet Status 
Datum: 17:14 Di 11.07.2006
Autor: dump_0

Aufgabe
Seien [mm]a, b, k, m \in \IZ[/mm] und [mm]k \ge 1, m \ge 2[/mm] und es gelte [mm]a \equiv b[/mm] [mm]mod[/mm] [mm]m[/mm].
Zeigen Sie, dass [mm]a^k \equiv b^k[/mm] [mm]mod[/mm] [mm]m[/mm] für alle [mm]k > 0[/mm] gilt.

Hallo!

Ich weiß nicht ganz genau wie ich die obige Aufgabe richtig beweisen soll, ich hatte an Induktion gedacht und bin mir aber nicht sicher ob es so geht:

Für [mm]k=1[/mm] ist die Aussage offensichtlich erfüllt.
Sei die Aussage also auch für alle [mm]k \in \IZ[/mm] erfüllt.
Dann ist [mm]a^{k+1} \equiv b^{k+1}[/mm] [mm]mod[/mm] [mm]m[/mm]
= [mm]a*a^k \equiv b*b^k[/mm] [mm]mod[/mm] [mm]m[/mm].

Nun weiß ich aber nicht mehr genau weiter mit dem Beweis, laut den "Modulo-Rechenregeln" gilt für versch. ganze Zahlen a,b,c,d:
Falls [mm]a \equiv b[/mm] [mm]mod[/mm] [mm]m[/mm] und [mm]c \equiv d[/mm] [mm]mod[/mm] [mm]m[/mm] gilt, dann gilt auch
[mm]a*c \equiv b*d[/mm] [mm]mod[/mm] [mm]m[/mm].

Aber kann man so einfach argumentieren?


Grüße
[mm] dump_0 [/mm]

        
Bezug
Beweis Modulorechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Di 11.07.2006
Autor: Hanno

Hallo.

> ´Nun weiß ich aber nicht mehr genau weiter mit dem Beweis, laut den "Modulo-Rechenregeln" gilt für versch. ganze Zahlen a,b,c,d:

Falls $ a [mm] \equiv [/mm] b $ mod m und $ c [mm] \equiv [/mm] d $ mod m gilt, dann gilt auch
$ [mm] a\cdot{}c \equiv b\cdot{}d [/mm] $ mod m.

> Aber kann man so einfach argumentieren?

Ja, damit kann man argumentieren.

Alternativ kannst du es auch direkt nachweisen: [mm] $a\equiv b\pmod{m}$ [/mm] ist äquivalent zu $m|a-b$. Möchtest du [mm] $a^k\equiv b^k\pmod{m}$ [/mm] zeigen, musst du also zeigen, dass $m$ Teiler von [mm] $a^k-b^k$ [/mm] ist. Um dies zu sehen, musst du [mm] $a^k-b^k$ [/mm] geeignet faktorisieren.


Liebe Grüße,
Hanno

Bezug
                
Bezug
Beweis Modulorechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 Di 11.07.2006
Autor: ardik


> Hallo.
>  
> > ´Nun weiß ich aber nicht mehr genau weiter mit dem Beweis,
> laut den "Modulo-Rechenregeln" gilt für versch. ganze
> Zahlen a,b,c,d:
>  Falls [mm]a \equiv b[/mm] mod m und [mm]c \equiv d[/mm] mod m gilt, dann
> gilt auch
>  [mm]a\cdot{}c \equiv b\cdot{}d[/mm] mod m.
>  
> > Aber kann man so einfach argumentieren?
>
> Ja, damit kann man argumentieren.

Hm, mache ich hier einen Denkfehler?
Durch die Verwendung von $c [mm] \equiv [/mm] d [mm] \mod [/mm] m$ setzt man hier doch das zu beweisende bereits als wahr voraus, oder?

Schöne Grüße,
ardik

Bezug
                        
Bezug
Beweis Modulorechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:16 Mi 12.07.2006
Autor: Hanno

Hallo.

> Durch die Verwendung von $ c [mm] \equiv [/mm] d [mm] \mod [/mm] m $ setzt man hier doch das zu beweisende bereits als wahr voraus, oder?

Nein, wenn du induktiv arbeitest, kannst du [mm] $a\equiv b\pmod{m}$ [/mm] und [mm] $a^n\equiv b^n\pmod{m}$ [/mm] voraussetzen und daraus [mm] $a^{n+1}\equiv b^{n+1}\pmod{m}$ [/mm] folgern.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de