www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Beweis Obersumme
Beweis Obersumme < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Obersumme: Idee
Status: (Frage) beantwortet Status 
Datum: 13:16 Sa 21.10.2006
Autor: Karlchen

Aufgabe
Berechne die Obersumme der Funktion f(x)=2x+1 im Intervall [0;a]

Guten Tag zusammen!

also die intervallbreite ist [mm] b=\bruch{a}{n} [/mm]
schreib ers ma auf wie weit ich bis jez gekommen bin:

On= [mm] \bruch{a}{n} [2\bruch{a}{n} +1+2\*2\bruch{a}{n} +1+3\*2\bruch{a}{n}+1+...+2\*(n-1)\bruch{a}{n} +1+2\*n\bruch{a}{n} [/mm] +1]

das kann ich dann umfromen:

On= [mm] \bruch{a}{n} [2\bruch{a}{n} +2\*2\bruch{a}{n} +3\*2\bruch{a}{n} +...+(n-1)\*2\bruch{a}{n} +n\*2\bruch{a}{n} [/mm] ] +a (weil ja n*1=a, oder?)

= [mm] 2\bruch{a^{2}}{n^{2}}[2+3+...+(n-1)+n]+a [/mm]

so, soweit bin ich gekommen. weiß nur nicht ob das richtig ist was ich da geamhct habe und wie ich jetzt weiter machen soll.
Wäre sehr nett wenn mir da jemand weiterhelfen könnte.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

mit freundlichen Grüßen euer Karlchen


        
Bezug
Beweis Obersumme: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Sa 21.10.2006
Autor: leduart

Hallo karlchen
> Berechne die Obersumme der Funktion f(x)=2x+1 im Intervall
> [0;a]
>  Guten Tag zusammen!
>  
> also die intervallbreite ist [mm]b=\bruch{a}{n}[/mm]
> schreib ers ma auf wie weit ich bis jez gekommen bin:
>  
> On= [mm]\bruch{a}{n} [2\bruch{a}{n} +1+2\*2\bruch{a}{n} +1+3\*2\bruch{a}{n}+1+...+2\*(n-1)\bruch{a}{n} +1+2\*n\bruch{a}{n}[/mm]
> +1]
>  
> das kann ich dann umfromen:
>  
> On= [mm]\bruch{a}{n} [2\bruch{a}{n} +2\*2\bruch{a}{n} +3\*2\bruch{a}{n} +...+(n-1)\*2\bruch{a}{n} +n\*2\bruch{a}{n}[/mm]
> ] +a (weil ja n*1=a, oder?)

gerechnet hast du richtig, aber du hast ja   [mm] \bruch{a}{n} [/mm] *n=a n*1=n nicht a!

> = [mm]2\bruch{a^{2}}{n^{2}}[2+3+...+(n-1)+n]+a[/mm]

Da hast du nen kleinen Fehler drin, in der Klammer steht  (1+2+....n)
dafür gibts ne eifache Formel:
schreib 1 + 2  +   3+.........+n
und      n+( n-1)+(n-2)+...+1
addier die 2 Zeilen und du hast n*(n+1)  eine Zeile allein ist deshalb :
[mm] \bruch{n*(n+1)}{2} [/mm]   und das setzest du für deine Klammer ein.
Dann dividierst du [mm] n^2+n [/mm] durch [mm] n^2 [/mm] und siehst direkt, was für große n passiert.
Gruss leduart


Bezug
                
Bezug
Beweis Obersumme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 Sa 21.10.2006
Autor: Karlchen

ahh ja...nun gut werds noch mal versuchen, rechtherzlichen Dank ihr zwei^^

Bezug
        
Bezug
Beweis Obersumme: MatheBank!
Status: (Antwort) fertig Status 
Datum: 15:29 Sa 21.10.2006
Autor: informix

Hallo,

[guckstduhier] MBFlächenbestimmung in unserer MBMatheBank

Gruß informix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de