www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Beweis Skalarprodukt / Betrag
Beweis Skalarprodukt / Betrag < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Skalarprodukt / Betrag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:02 Mi 10.11.2010
Autor: student124

Aufgabe
1. Zeigen Sie: Für alle [mm]\vec{x},\vec{y}\in\IR^n [/mm] gilt:

[mm] \left| \vec{x} + \vec{y} \right|^2 [/mm] - [mm] \left| \vec{x} - \vec{x} \right|^2 [/mm] = [mm] 4\left\langle \vec{x}, \vec{y} \right\rangle [/mm]

2. Welchen geometrischen Sachverhalt beschreibt diese Gleichung im Fall n = 2, falls [mm] \left\langle \vec{x}, \vec{y} \right\rangle [/mm] = 0 gilt?

Hallo Forum,

ich bin wie folgt an oben stehende Aufgabe ran gegangen:

Aufgabe 1:
Der Betrag ist ja definiert als [mm] \left| \vec{x} \right| [/mm] = [mm] \wurzel{\vec{x}^2}. [/mm]

Nun dachte ich, ich kann den linken Teil der Gleichung mit Hilfe der Binomischen Formel auflösen und erhalten dann:

[mm] 4\left| \vec{x} \vec{y} \right| [/mm] = 4 [mm] \left\langle \vec{x}, \vec{y} \right\rangle [/mm]

und da ja 4 [mm] \left\langle \vec{x}, \vec{y} \right\rangle [/mm] eigentlich [mm] 4\vec{x}\vec{y} [/mm] ist (Idee: Skalarprodukt bilden), steht da:

[mm] 4\vec{x}\vec{y} [/mm] = [mm] 4\vec{x}\vec{y} [/mm]

nun scheint mir die Lösung aber zu einfach. Außerdem habe ich [mm] \left| \vec{x} \right| [/mm] = [mm] \wurzel{\vec{x}^2} [/mm] nicht auf der rechten Seite der Gleichung miteingezogen. Hilfe ?

Zu 2.

Dachte eigentlich der Geometrische Sachverhalt ist die Orthogonalität. Ist aber leider falsch.
Daher die Frage, was genau bedeutet n=0?

Bin für jeden Beitrag dankbar!

Grüße


        
Bezug
Beweis Skalarprodukt / Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Mi 10.11.2010
Autor: wieschoo

Hi,
> 1. Zeigen Sie: Für alle [mm]\vec{x},\vec{y}\in\IR^n[/mm] gilt:
>  
> [mm]\left| \vec{x} + \vec{y} \right|^2[/mm] - [mm]\left| \vec{x} - \green{\vec{y}} \right|^2[/mm]
> = [mm]4\left\langle \vec{x}, \vec{y} \right\rangle[/mm]
>  
> 2. Welchen geometrischen Sachverhalt beschreibt diese
> Gleichung im Fall n = 2, falls [mm]\left\langle \vec{x}, \vec{y} \right\rangle[/mm]
> = 0 gilt?
>  Hallo Forum,
>  
> ich bin wie folgt an oben stehende Aufgabe ran gegangen:
>  
> Aufgabe 1:
>  Der Betrag ist ja definiert als [mm]\left| \vec{x} \right|[/mm] =
> [mm]\wurzel{\vec{x}^2}.[/mm]

Jein. Außerdem geht es hier um die Norm, da es sich hierbei um Vektoren handelt. [mm]||\vec{x}||=||\vec{x}||_2=\sqrt{\sum_{i=1}^{n}|x_i|^2}[/mm]
Außerdem gilt [mm]||\vec{x}||^2=\left\langle \vec{x}, \vec{x} \right\rangle[/mm].

>  
> Nun dachte ich, ich kann den linken Teil der Gleichung mit
> Hilfe der Binomischen Formel auflösen und erhalten dann:

Binomische Formel klingt nach keiner guten Idee.

>  
> [mm]4\left| \vec{x} \vec{y} \right|[/mm] = 4 [mm]\left\langle \vec{x}, \vec{y} \right\rangle[/mm]

Die Struktur sieht schon nicht gut aus.

>  
> und da ja 4 [mm]\left\langle \vec{x}, \vec{y} \right\rangle[/mm]
> eigentlich [mm]4\vec{x}\vec{y}[/mm] ist (Idee: Skalarprodukt
> bilden), steht da:

[mm]\left\langle \vec{x}, \vec{y} \right\rangle[/mm] ist das Skalarprodukt.

>  
> [mm]4\vec{x}\vec{y}[/mm] = [mm]4\vec{x}\vec{y}[/mm]
>  
> nun scheint mir die Lösung aber zu einfach. Außerdem habe
> ich [mm]\left| \vec{x} \right|[/mm] = [mm]\wurzel{\vec{x}^2}[/mm] nicht auf
> der rechten Seite der Gleichung miteingezogen. Hilfe ?
>  
> Zu 2.
>  
> Dachte eigentlich der Geometrische Sachverhalt ist die
> Orthogonalität. Ist aber leider falsch.
>  Daher die Frage, was genau bedeutet n=0?

n=2. [mm]\left\langle \vec{x}, \vec{y} \right\rangle = 0\gdw \vec{x} \perp \vec{y}[/mm] stimmt schon. Es ist ja
[mm] \cos \left(\vec x,\vec y\right)=\frac{\vec x\cdot\vec y}{\left|\vec x\right|\,\left|\vec y\right|}=0\gdw \vec x\cdot\vec y = 0[/mm]

>
> Bin für jeden Beitrag dankbar!
>  
> Grüße
>  

Probier folgendes
[mm]\left|| \vec{x} + \vec{y} \right||^2 - \left|| \vec{x} - \green{\vec{y}} \right||^2[/mm]
und setze [mm] $||z||^2=\left\langle \vec{z}, \vec{z} \right\rangle$ [/mm]

Der Rest sollte leicht folgen.




Bezug
                
Bezug
Beweis Skalarprodukt / Betrag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:25 Mi 10.11.2010
Autor: student124

vielen Dank für deine Antwort!

Hast du mir vielleicht auch einen Ansatz wie ich bei 1) anfangen sollte?

Bezug
                        
Bezug
Beweis Skalarprodukt / Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Mi 10.11.2010
Autor: leduart

Hallo
beihnahe wie du es gemacht hast nur eben den Betrag als Skalarprodukt schreiben.
Gruss leduart


Bezug
                        
Bezug
Beweis Skalarprodukt / Betrag: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:57 Mi 10.11.2010
Autor: wieschoo

Hab ich doch geschrieben:

" Probier folgendes
[mm] \left|| \vec{x} + \vec{y} \right||^2 - \left|| \vec{x} - \green{\vec{y}} \right||^2 [/mm]
und setze [mm] ||z||^2=\left\langle \vec{z}, \vec{z} \right\rangle [/mm]"


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de