www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Beweis, Ungleichung, Arg, Abs
Beweis, Ungleichung, Arg, Abs < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis, Ungleichung, Arg, Abs: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 Mi 22.09.2010
Autor: Denny22

Hallo an alle,

ich verstehe einen (vermutlich trivialen) Rechenschritt aus dem Buch nicht.

Voraussetzungen:

(1): [mm] $-\frac{\pi}{2}<\beta<\frac{\pi}{2}$ [/mm]
(2): [mm] $z\in\IC$ [/mm] mit [mm] $-\frac{\pi}{2}+\beta<\mathrm{arg}(z)<\frac{3\pi}{2}+\beta$ [/mm]
(3): [mm] $\delta>0$, [/mm] so dass
          (a): [mm] $-\frac{\pi}{2}+\delta\leqslant\beta\leqslant\frac{\pi}{2}-\delta$ [/mm]
          (b): [mm] $z\in\IC$ [/mm] mit [mm] $-\pi+\delta\leqslant\mathrm{arg}(z)-\left(\frac{\pi}{2}+\beta\right)\leqslant\pi-\delta$ [/mm]
               [mm] $(\Rightarrow\;-\frac{\pi}{2}+\beta+\delta\leqslant\mathrm{arg}(z)\leqslant\frac{3\pi}{2}+\beta-\delta$) [/mm]

Dann gilt (wegen (3)(a) und (3)(b)):

     [mm] $-\pi+2\delta\leqslant\mathrm{arg}(z)\leqslant 2\pi-2\delta$ [/mm]

Aussage:

Sei nun [mm] $u=r_ue^{i\beta}$ [/mm] (mit [mm] $\IR\ni r_u>0$), $t\in\left[0,1\right]$. [/mm] Dann soll dem Buch zufolge folgendes erfuellt sein:

     (A): [mm] $\left|1-\frac{ut}{2iz}\right|\geqslant\sin\delta$ [/mm]
     (B): [mm] $\left|\mathrm{arg}\left(1-\frac{ut}{2iz}\right)\right|<\pi$ [/mm]

Loesungsidee:
Sei [mm] $u=r_ue^{i\beta}$ [/mm] (mit [mm] $\IR\ni r_u>0$), $t\in\left[0,1\right]$, $z=r_ze^{i\mathrm{arg}(z)}$ [/mm] (mit [mm] $\IR\ni r_z>0$ [/mm] und [mm] $\mathrm{arg}(z)$ [/mm] entsprechend der Voraussetzungen). Dann gilt (wegen [mm] $i=e^{i\frac{\pi}{2}}$): [/mm]

     [mm] $1-\frac{ut}{2iz}=1-\frac{r_ue^{i\beta}t}{2e^{i\frac{\pi}{2}}r_ze^{i\mathrm{arg}(z)}}=1-\frac{r_ut}{2r_z}\cdot e^{i\left(\beta-\frac{\pi}{2}-\mathrm{arg}(z)\right)}$ [/mm]

Aber wie komme ich nun auf die aufgefuehrten Ungleichungen?

Danke

        
Bezug
Beweis, Ungleichung, Arg, Abs: Antwort
Status: (Antwort) fertig Status 
Datum: 07:30 Fr 24.09.2010
Autor: rainerS

Hallo!

> Hallo an alle,
>  
> ich verstehe einen (vermutlich trivialen) Rechenschritt aus
> dem Buch nicht.
>  
> Voraussetzungen:
>  
> (1): [mm]-\frac{\pi}{2}<\beta<\frac{\pi}{2}[/mm]
>  (2): [mm]z\in\IC[/mm] mit
> [mm]-\frac{\pi}{2}+\beta<\mathrm{arg}(z)<\frac{3\pi}{2}+\beta[/mm]
>  (3): [mm]\delta>0[/mm], so dass
>            (a):
> [mm]-\frac{\pi}{2}+\delta\leqslant\beta\leqslant\frac{\pi}{2}-\delta[/mm]
>            (b): [mm]z\in\IC[/mm] mit
> [mm]-\pi+\delta\leqslant\mathrm{arg}(z)-\left(\frac{\pi}{2}+\beta\right)\leqslant\pi-\delta[/mm]
>                
> [mm](\Rightarrow\;-\frac{\pi}{2}+\beta+\delta\leqslant\mathrm{arg}(z)\leqslant\frac{3\pi}{2}+\beta-\delta[/mm])
>  
> Dann gilt (wegen (3)(a) und (3)(b)):
>  
> [mm]-\pi+2\delta\leqslant\mathrm{arg}(z)\leqslant 2\pi-2\delta[/mm]
>  
> Aussage:
>  
> Sei nun [mm]u=r_ue^{i\beta}[/mm] (mit [mm]\IR\ni r_u>0[/mm]),
> [mm]t\in\left[0,1\right][/mm]. Dann soll dem Buch zufolge folgendes
> erfuellt sein:
>  
> (A): [mm]\left|1-\frac{ut}{2iz}\right|\geqslant\sin\delta[/mm]
>       (B):
> [mm]\left|\mathrm{arg}\left(1-\frac{ut}{2iz}\right)\right|<\pi[/mm]
>  
> Loesungsidee:
>  Sei [mm]u=r_ue^{i\beta}[/mm] (mit [mm]\IR\ni r_u>0[/mm]),
> [mm]t\in\left[0,1\right][/mm], [mm]z=r_ze^{i\mathrm{arg}(z)}[/mm] (mit [mm]\IR\ni r_z>0[/mm]
> und [mm]\mathrm{arg}(z)[/mm] entsprechend der Voraussetzungen). Dann
> gilt (wegen [mm]i=e^{i\frac{\pi}{2}}[/mm]):
>  
> [mm]1-\frac{ut}{2iz}=1-\frac{r_ue^{i\beta}t}{2e^{i\frac{\pi}{2}}r_ze^{i\mathrm{arg}(z)}}=1-\frac{r_ut}{2r_z}\cdot e^{i\left(\beta-\frac{\pi}{2}-\mathrm{arg}(z)\right)}[/mm]
>  
> Aber wie komme ich nun auf die aufgefuehrten
> Ungleichungen?

Die Ungleichung für das Argument bedeutet doch nur, dass [mm] \left(1-\frac{ut}{2iz}\right) [/mm] entweder reell ist oder positiven Imaginärteil hat. (Wieso eigentlich Betrag des Arguments? Die Argumentfunktion hat doch nur nichtnegative reelle Werte.)

Ich würde daher Real- und Imaginärteil sowie den Betrag des betrachteten Ausdrucks erst einmal explizit ausrechnen, z.B.

  [mm] 1-\frac{ut}{2iz} = 1 -\frac{r_ut}{2r_z} \cos (\beta-\frac{\pi}{2}-\mathrm{arg}(z)) - i \frac{r_ut}{2r_z}\sin (\beta-\frac{\pi}{2}-\mathrm{arg}(z)) [/mm]

  [mm] = 1 -\frac{r_ut}{2r_z} \cos \left(\mathrm{arg}(z)-\left(\frac{\pi}{2}+\beta\right)+\pi\right) +i \frac{r_ut}{2r_z}\sin\left(\mathrm{arg}(z)-\left(\frac{\pi}{2}+\beta\right)+\pi\right)[/mm]

  [mm] = 1 + \frac{r_ut}{2r_z} \cos \left(\mathrm{arg}(z)-\left(\frac{\pi}{2}+\beta\right)\right) -i \frac{r_ut}{2r_z}\sin\left(\mathrm{arg}(z)-\left(\frac{\pi}{2}+\beta\right)\right) [/mm]

und

  [mm] \left|1-\frac{ut}{2iz}\right|^2 = \left(1-\frac{r_ut}{2r_z}\cdot e^{i\left(\beta-\frac{\pi}{2}-\mathrm{arg}(z)\right)}\right)\left(1-\frac{r_ut}{2r_z}\cdot e^{-i\left(\beta-\frac{\pi}{2}-\mathrm{arg}(z)\right)}\right) [/mm]

  [mm] = 1 + \left(\frac{r_ut}{2r_z}\right)^2 - \bruch{r_ut}{r_z} \cos(\beta-\frac{\pi}{2}-\mathrm{arg}(z)) [/mm]

  [mm] = 1 + \left(\frac{r_ut}{2r_z}\right)^2 + \bruch{r_ut}{r_z} \cos\left(\mathrm{arg}(z)-\left(\frac{\pi}{2}+\beta\right)\right) [/mm] .

Viele Grüße
   Rainer

Bezug
                
Bezug
Beweis, Ungleichung, Arg, Abs: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:57 Fr 24.09.2010
Autor: felixf

Moin Rainer,

> (Wieso eigentlich Betrag des
> Arguments? Die Argumentfunktion hat doch nur nichtnegative
> reelle Werte.)

wieso hat sie denn nur nichtnegative reelle Werte? Warum nicht Werte zwischen [mm] $-\pi$ [/mm] und [mm] $\pi$ [/mm] (das wird []hier z.B. so gemacht)? Oder zwischen [mm] $-\exp(23)$ [/mm] und [mm] $-\exp(23) [/mm] + 2 [mm] \pi$? [/mm] Oder Werte in irgendeinem (vom Auswahlaxiom gewaehlten, recht wilden) Repraesentantensystem von [mm] $\IR [/mm] / 2 [mm] \pi \IZ$? [/mm] ;-)

Ich vermute mal, dass nicht alle die Argumentfunktion gleich definieren, die einzige Gemeinsamkeit ist wohl, dass [mm] $\frac{x}{\exp(i \cdot arg(x))} \in \IR_{>0}$ [/mm] liegt fuer $x [mm] \in \IC^\ast$. [/mm]

Wie genau sie beim Fragesteller definiert ist, kann vermutlich nur er uns verraten...

LG Felix


Bezug
                        
Bezug
Beweis, Ungleichung, Arg, Abs: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:34 Fr 24.09.2010
Autor: Denny22

Vielen lieben Dank fuer Eure Hilfe. Fuer den Nachweis habe ich voellig uebersehen, dass [mm] $\mathrm{arg}(z)$ [/mm] und [mm] $\beta$ [/mm] eine zusaetzliche Bedingung erfuellen, die im Buch 40 Seiten vorher erwaehnt wurde. Am Rande: Das Argument liegt im Buch (aus Symmetriegruenden) im Intervall [mm] $[-\pi,\pi[$. [/mm]

Danke

Bezug
                        
Bezug
Beweis, Ungleichung, Arg, Abs: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:23 Fr 24.09.2010
Autor: rainerS

Hallo Felix,

> Moin Rainer,
>  
> > (Wieso eigentlich Betrag des
> > Arguments? Die Argumentfunktion hat doch nur nichtnegative
> > reelle Werte.)
>  
> wieso hat sie denn nur nichtnegative reelle Werte? Warum
> nicht Werte zwischen [mm]-\pi[/mm] und [mm]\pi[/mm] (das wird
> []hier
> z.B. so gemacht)? Oder zwischen [mm]-\exp(23)[/mm] und [mm]-\exp(23) + 2 \pi[/mm]?
> Oder Werte in irgendeinem (vom Auswahlaxiom gewaehlten,
> recht wilden) Repraesentantensystem von [mm]\IR / 2 \pi \IZ[/mm]?
> ;-)

Du hast natürlich recht; ich hatte dies wegen der Bedingung (2) angenommen, aber da [mm] $\beta$ [/mm] auch negativ sein darf, ist das nicht schlüssig.

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de