www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Beweis Zeilenrang = Spaltenran
Beweis Zeilenrang = Spaltenran < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Zeilenrang = Spaltenran: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 14:19 So 18.04.2010
Autor: marteen

Hallo,

es geht im im Betreff genannten Beweis. Prolog (müsst Ihr nicht lesen): Ich habe 3 Varianten - eine Indexschlacht, eine über den Dualraum (sehr kurz) und eine, wie ich finde, sehr elegante Variante von angela h.b (?). Da ich in einer Woche meine Zwischenprüfung absolviere und ich den Prüfer nicht in Richtung Dualraum schieben will (weil ich dieses Thema hasse wie die Pest), habe ich mich für die 3. Variante entschieden.

Zu dem Beweis: A sei eine mxn Matrix einer linearen Abbildung (die adequat definiert wird), f(x) := Ax.

Es gilt: dim Bild(f) = Spaltenrang A , dim Ker(f) = n - Zeilenrang A    (*)

Somit folgt n= dim Ker(f) + dim Bild(f) = Spaltenrang A + n - Zeilenrang A

=> Spaltenrang A = Zeilenrang A


Der Punkt (*)  macht mir Probleme - was ich weiß: Der Zeilenrang ist ja quasi die Anzahl der Zeilen, die nach Überführung in ZSF übrigbleiben (also die Anzahl der linear unabhängigen Spalten), das heißt in diesen Zeilen existieren ja Pivotköpfe, richtig? Und n ist die Anzahl der Spalten - warum ist dann der dim Ker(f) = n - Zeilenrang A ? Es wäre nett, wenn mir das jemand erläutern bzw. ausführen könnte.

Viele Grüße

        
Bezug
Beweis Zeilenrang = Spaltenran: Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 So 18.04.2010
Autor: Blech

Hi,

> Der Punkt (*)  macht mir Probleme - was ich weiß: Der
> Zeilenrang ist ja quasi die Anzahl der Zeilen, die nach
> Überführung in ZSF übrigbleiben (also die Anzahl der
> linear unabhängigen Spalten), das heißt in diesen Zeilen
> existieren ja Pivotköpfe, richtig? Und n ist die Anzahl
> der Spalten - warum ist dann der dim Ker(f) = n -
> Zeilenrang A ? Es wäre nett, wenn mir das jemand

Für jede Stufe in der ZSF, die ausgelassen wird (entspricht der Anzahl der 0-Zeilen), gewinnt der Kern 1 zusätzlichen Freiheitsgrad. Der Kern ist ja die Lösungsmenge des LGS

$(A\ |\ 0)$, bzw. $(Z\ |\ 0)$,

wenn Z eine ZSF von A ist. Du hast "Anzahl an nicht-0-Zeilen" (=Zeilenrang) Gleichungen für n Unbekannte.

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de