www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Beweis bei Körpern
Beweis bei Körpern < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis bei Körpern: Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 14:20 Do 18.11.2010
Autor: FIN10

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Es sei $K$ ein Körper, $0$ die Null und $1$ die Eins von $K$.
Im Allgemeinen ist die Menge $\IN=\{0,1,2,\ldots\}$ nicht in $K$ enthalten! Es wird zu jedem $n \in \IN$ für jedes $a \in K$ das natürliche Vielfache $n \times a$, das $n$-fache von $a$, definiert:

$n\times a=\begin{cases} 0 & \mbox{für } n=0 \\ ((n-1) \times a) + a  & \mbox{für } n=1,2,3,\ldots}\end{cases}$


Beweisen Sie:
a) Ist $a \in K$ und $n \in \IN$, so ist $-(n \times a) = n \times (-a)$.
b) Sind $a,b \in K$ und $n \in \IN$, so ist $n \times (a+b) = ( n \times a ) + ( n \times b)$.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Für mich sind die Schlussfolgerungen logisch, doch ich weiß nicht, wie ich sie beweisen soll!
Kann mir vielleicht jmd helfen?

Vielen Dank im Voraus!

        
Bezug
Beweis bei Körpern: Antwort
Status: (Antwort) fertig Status 
Datum: 18:12 Do 18.11.2010
Autor: piet.t

Hallo,

> Für mich sind die Schlussfolgerungen logisch, doch ich
> weiß nicht, wie ich sie beweisen soll!
> Kann mir vielleicht jmd helfen?

Also für mich sind sie auf den ersten Blick noch nicht unbedingt logisch - beachte vor allem, dass [mm]n[/mm] ja gar nicht im Körper liegt....

Nachdem man hier ja irgend etwas für alle [mm]n \in \IN[/mm] zeigen soll ist es schon mal naheliegend, hier mit vollständiger Induktion zu arbeiten. Versuch es doch einmal damit.
Zu Aufgabe a) würde ich vorschlagen, dass Du zeigst, dass [mm]-(n\times a) + (n \times (-a)) = 0 \quad \forall n \in \IN[/mm].

Die b) geht per Induktion eigentlich ganz gerade durch.


Du kannst ja gerne Deine Ansätze hier nochmal posten.

Gruß

piet

Bezug
                
Bezug
Beweis bei Körpern: Lösungsvorschlag
Status: (Frage) beantwortet Status 
Datum: 18:50 Do 18.11.2010
Autor: FIN10

Für die Aufgabe hätteich jetzt folgende Überlegungen:

a)        -(n x a) =n x (-a)
     =>  -(n x a) - (n x (-a)) = 0
     =>  lt. Definition
     =>  0 x a - 0 x a = 0
     =>  0 = 0

b)        n x (a+b) = (n x a) + (n x b)

            für n = 1
     =>  1 x (a+b) = (1 x a) + (1 x b)
     => a + b = a + b

             für n = k+1
     => (k+1) x (a+b) = ((k+1) x a) + ((k+1) x b)
     => (k x a + a)+(k x b + b) = (k x a + a) +(k x b + b)

Wäre das so ungefähr richtig?

Bezug
                        
Bezug
Beweis bei Körpern: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Do 18.11.2010
Autor: leduart

Hallo
du benutzt die Def von n*a ja nirgends (oder ich seh es nicht!)
a) Beh -7=7
-7-7=0
lt. def
0*(-7)+0*(-7)=0
0=0
bei b) wo hast du die ind. Vors benutzt?
ich seh zumindest keine Induktion.
Gruss leduart


Bezug
                                
Bezug
Beweis bei Körpern: Nachfrage
Status: (Frage) beantwortet Status 
Datum: 19:54 Do 18.11.2010
Autor: FIN10

stimmt, bei a hab ich es vergessen mit hinzuschreiben. Das war eine Zwischenzeile, die ich vergessen habe.

Bei b habe ich mir extra ein Buch zur Hand genommen und versucht danach die Induktion durchzuführen, aber so ganz sehe ich da eben nicht durch. Es geht ja darum, zu zeigen, dass die Gleichung für alle n gilt. Daum habe ich erst 1 eingesetzt und dann k+1. So war es in dem Beispiel im Buch beschrieben. Also habe ich es wohl noch nicht recht verstanden. Wie müsste ich denn demnach richtigerweise vorgehen?

Bezug
                                        
Bezug
Beweis bei Körpern: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Do 18.11.2010
Autor: piet.t

Hallo,

bleiben wir erst mal bei b), wenn Du da sauber durch bist klappt vielleicht auch a) besser.

> Bei b habe ich mir extra ein Buch zur Hand genommen und
> versucht danach die Induktion durchzuführen, aber so ganz
> sehe ich da eben nicht durch. Es geht ja darum, zu zeigen,
> dass die Gleichung für alle n gilt.

Korrekt.
> Daum habe ich erst 1 eingesetzt
Wenn ich mir die Aufgabenstellung durchlese soll die 0 aber auch zu den natürlichen Zahlen gehören - also fange besser mit 0 an und zeige, dass die Behauptung für n=0 richtig ist (-> Induktionsanfang).

> und dann k+1. So war es in dem Beispiel im Buch
> beschrieben. Also habe ich es wohl noch nicht recht
> verstanden. Wie müsste ich denn demnach richtigerweise
> vorgehen?

Wenn wir jetzt voraussetzen, dass die Behauptung für n=k gilt (Induktionsannahme), dann musst Du nur noch zeigen, dass sie dann auch für n=k+1 gilt (Induktionsschluss) und schon ist die Behauptung für alle n gezeigt: Für 0 ist sie richtig, dann gilt sie auch für 0+1=1 und dann auch für 1+1=2 usw.

> für n = k+1
> => (k+1) x (a+b) = ((k+1) x a) + ((k+1) x b)
> => (k x a + a)+(k x b + b) = (k x a + a) +(k x b + b)

Die Umformung auf der rechten Seite verstehe ich, denn das ist ja gerade die Definition von [mm] $(k+1)\times [/mm] a$. Aber auf der linken Seite sehe ich noch nicht, warum [mm] $(k+1)\times [/mm] (a+b) = (k [mm] \times [/mm] a + a) + (k [mm] \times [/mm] b + b)$ sein soll. Versuche diese Gleichheit einmal durch mehrere einfache Umformungen zu zeigen, wobei Du bei jedem Schritt angibst, welche Regel oder Definition du gerade benutzt. Dabei darfst Du die Definition von [mm] $n\times [/mm] a$ und die Körperaxiome (edit: und natürlich die Induktionsannahme [mm] $k\times [/mm] (a+b) = [mm] k\times [/mm] a + [mm] k\times [/mm] b$) verwenden. Beachte aber, dass für [mm] $\times$ [/mm] kein Distributivgesetzverwenden darst, denn [mm] $\times$ [/mm] ist ja nicht die Multiplikation in K sondern irgenwas anderes.

Gruß

piet


Bezug
                                                
Bezug
Beweis bei Körpern: Weiterführung
Status: (Frage) beantwortet Status 
Datum: 20:47 Do 18.11.2010
Autor: FIN10

Also ich habe jetzt für n = 0

0 x (a+b) = ( 0 x a) + ( 0 x b)
( 0 x a) + ( 0 x b) = ( 0 x a) + ( 0 x b) [mm] \Rightarrow [/mm] laut Definition
0 + 0 = 0 + 0
0=0

für n = 1 wie gehabt
und für n= k+1:

(k + 1) x (a + b) = (( k + 1) x a) + ((k + 1) x b)
((k x a)+ (1 x a)) + ((k x b) + (1 x b))= ((k x a)+ (1 x a)) + ((k x b) + (1 x b))

und daran sehe ich doch, dass es gleich ist. Nur weiß ich immer nicht, welches Gesetz ich gerade verwende oder verwenden soll!


Bezug
                                                        
Bezug
Beweis bei Körpern: Antwort
Status: (Antwort) fertig Status 
Datum: 10:37 Fr 19.11.2010
Autor: leduart

Hallo
du verwendest einfach das Distributivgesetz für das [mm] \times, [/mm] das du ja gerade beweisen willst.
Verwenden darfst du:
[mm] f(n)=\begin{cases} 0 x a := 0 \\ n x a := ((n-1)x a) + a & \mbox{für n=1,2,3,...}\end{cases} [/mm]
und weiter nichts.

> Also ich habe jetzt für n = 0
>  
> 0 x (a+b) = ( 0 x a) + ( 0 x b)

jetzt einfach nicht Distributivges. sondern nach Def ist 0 x (a+b)=0 und die 2 Terme rechts auch.
also einfach 0=0+0

>  ( 0 x a) + ( 0 x b) = ( 0 x a) + ( 0 x b) [mm]\Rightarrow[/mm] laut
> Definition
>  0 + 0 = 0 + 0
>  0=0
>  
> für n = 1 wie gehabt

brauchst du nicht, aber wenn dann nicht wie du, sondern mit der Def oben in der du n=1 einsetzt!

>  und für n= k+1:

jetz wirklich erst die Ind.vors für k hinschreiben, dann die Def explizit benutzen um auf k+1 zu kommen!
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de