www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Beweis der Konvergenz
Beweis der Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis der Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Fr 29.10.2010
Autor: Schmetterfee

Aufgabe
Man beweise, dass die Reihe [mm] \summe_{n=1}^{\infty} \bruch{1}{n*(n+1)*(n+2)} [/mm] konvergiert und bestimme ihren Grenzwert.

Hallo

ich habe ein Problem mit der obrigen Aufgabe und zwar habe ich meinen beweis begonnen in dem ich erstmal gesagt habe das es für n [mm] \ge [/mm] 1 eine zerlegung von [mm] \bruch{1}{n*(n+1)*(n+2)} [/mm] = [mm] \bruch{1}{n} [/mm] - [mm] \bruch{1}{(n+1)} [/mm] - [mm] \bruch{1}{(n+2)} [/mm] gibt dann habe ich mit den Partialsummen wie folgt argumentiert:
[mm] s_{k}:= \summe_{n=1}^{k} \bruch{1}{n*(n+1)*(n+2)}= \summe_{n=1}^{k} \bruch{1}{n} [/mm] -  [mm] \summe_{n=1}^{k} \bruch{1}{(n+1)} [/mm] -  [mm] \summe_{n=1}^{k} \bruch{1}{(n+2)}= [/mm] 1+ ...+ [mm] \bruch{1}{n} -(\bruch{1}{2}+...+\bruch{1}{n+1} [/mm] - [mm] \summe_{n=1}^{k} \bruch{1}{(n+2)}= [/mm] 1 - [mm] \bruch{1}{n+1} [/mm] - [mm] \summe_{n=1}^{k} \bruch{1}{(n+2)} [/mm]

Und an dieser Stelle weiß ich leider nicht wie ich weiter machen soll...Ist der Ansatz denn soweit richtig oder ist der bereits von mir ungünstig gewählt...Ich wäre für jede hilfe sehr dankbar...

LG Schmetterfee

        
Bezug
Beweis der Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:59 Fr 29.10.2010
Autor: Schmetterfee

Oh das is mir in den Analysisteil der Schulmathematik gerutscht..kann das jemand in die Analysis der Hochschulmathematik verschieben?

LG Schmetterfee

Bezug
        
Bezug
Beweis der Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Fr 29.10.2010
Autor: Sax

Hi,

deine Idee mit der Partialbruchzerlegung ist sehr gut, die Zähler sind allerdings falsch berechnet.

Gruß Sax.

Bezug
                
Bezug
Beweis der Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:34 Fr 29.10.2010
Autor: Schmetterfee

Hallo

So ich habe noch mal nachgerechnet un die zerlegung lautet:
[mm] \bruch{1}{n*(n+1)*(n+2)}= \bruch{1}{2n}- \bruch{1}{(n+1)}+\bruch{1}{2(n+2)} [/mm]

Damit ist [mm] s_{k}:= \summe_{n=1}^{k} \bruch{1}{n*(n+1)*(n+2)}= \summe_{n=1}^{k} (\bruch{1}{2n}- \bruch{1}{(n+1)}+\bruch{1}{2(n+2)}) [/mm] = [mm] \summe_{n=1}^{k}\bruch{1}{2n}- \summe_{n=1}^{k} \bruch{1}{(n+1)}+\summe_{n=1}^{k} \bruch{1}{2(n+2)} [/mm]

Nun komme ich an dieser Stelle aber leider nicht weiter...kann mir jemand einen tipp geben wie ich hier weiter machen muss...

LG Schmetterfee

Bezug
                        
Bezug
Beweis der Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Fr 29.10.2010
Autor: leduart

Hallo
> Hallo
>  
> So ich habe noch mal nachgerechnet un die zerlegung
> lautet:
>  [mm]\bruch{1}{n*(n+1)*(n+2)}= \bruch{1}{2n}- \bruch{1}{(n+1)}+\bruch{1}{2(n+2)}[/mm]
>  
> Damit ist [mm]s_{k}:= \summe_{n=1}^{k} \bruch{1}{n*(n+1)*(n+2)}= \summe_{n=1}^{k} (\bruch{1}{2n}- \bruch{1}{(n+1)}+\bruch{1}{2(n+2)})[/mm]
> = [mm]\summe_{n=1}^{k}\bruch{1}{2n}- \summe_{n=1}^{k} \bruch{1}{(n+1)}+\summe_{n=1}^{k} \bruch{1}{2(n+2)}[/mm]

besser die 1/2 vor die Summe ziehen, und auch die mittlere Summe als  2 Summen  mit 1/2 davor schreiben.
dann die ersten 2 Summen zusammen ansehen und die letzten 2 , jeweils bei einer Summe den Index so verschieben, dass die Ausdrücke in beiden summen gleich sind.
Gruss leduart



Bezug
                                
Bezug
Beweis der Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 Mo 01.11.2010
Autor: Schmetterfee


> Hallo
>  > Hallo

>  >  
> > So ich habe noch mal nachgerechnet un die zerlegung
> > lautet:
>  >  [mm]\bruch{1}{n*(n+1)*(n+2)}= \bruch{1}{2n}- \bruch{1}{(n+1)}+\bruch{1}{2(n+2)}[/mm]
>  
> >  

> > Damit ist [mm]s_{k}:= \summe_{n=1}^{k} \bruch{1}{n*(n+1)*(n+2)}= \summe_{n=1}^{k} (\bruch{1}{2n}- \bruch{1}{(n+1)}+\bruch{1}{2(n+2)})[/mm]
> > = [mm]\summe_{n=1}^{k}\bruch{1}{2n}- \summe_{n=1}^{k} \bruch{1}{(n+1)}+\summe_{n=1}^{k} \bruch{1}{2(n+2)}[/mm]
>  
> besser die 1/2 vor die Summe ziehen, und auch die mittlere
> Summe als  2 Summen  mit 1/2 davor schreiben.
>  dann die ersten 2 Summen zusammen ansehen und die letzten
> 2 , jeweils bei einer Summe den Index so verschieben, dass
> die Ausdrücke in beiden summen gleich sind.
>  Gruss leduart
>  

Hallo ich habe versucht deine hinweise um zusetzen und bin dann zu dem folgenden Schluss gekommen:

= [mm] \summe_{n=1}^{k}\bruch{1}{2n}- \summe_{n=1}^{k} \bruch{1}{(n+1)}+\summe_{n=1}^{k} \bruch{1}{2(n+2)} [/mm]
[mm] =\bruch{1}{2} (\summe_{n=1}^{k}\bruch{1}{n}- \summe_{n=1}^{k} \bruch{1}{(n+1)}- \summe_{n=1}^{k} \bruch{1}{(n+1)}+\summe_{n=1}^{k} \bruch{1}{n+2}) [/mm]
[mm] =\bruch{1}{2} (\summe_{n=1}^{k}\bruch{1}{n}- \summe_{n=2}^{k+1} \bruch{1}{n+1}- \summe_{n=2}^{k+1} \bruch{1}{n}+\summe_{n=3}^{k+2} \bruch{1}{n}) [/mm]
[mm] =\bruch{1}{2} [/mm] (1- [mm] \bruch{1}{k+1}-\bruch{1}{2}+\bruch{1}{k+2}) [/mm]
[mm] =\bruch{1}{2} (\bruch{1}{2}- \bruch{1}{k+1}+\bruch{1}{k+2}) [/mm]

Daher gilt [mm] \summe_{n=1}^{\infty} \bruch{1}{n*(n+1)*(n+2)}= \limes_{k\rightarrow\infty} s_{k}= \bruch{1}{4} [/mm]

ist das denn so korrekt? oder hab ich da immer noch was falsch gemacht?

LG Schmetterfee



Bezug
                                        
Bezug
Beweis der Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Mo 01.11.2010
Autor: leduart

Hallo
ich seh grad keinen Fehler mehr, nur bei einem Zwischenschritt wohl ein Tipfehler:
$ [mm] =\bruch{1}{2} (\summe_{n=1}^{k}\bruch{1}{n}- \summe_{n=2}^{k+1} \bruch{1}{n+1}- \summe_{n=2}^{k+1} \bruch{1}{n}+\summe_{n=3}^{k+2} \bruch{1}{n}) [/mm] $
in der zweiten Summe 1/n statt 1/(n+1).
(merk dir den Trick mit dem Aufteilen bei 3 Summen!)
Gruss leduart



Bezug
                                                
Bezug
Beweis der Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:27 Mo 01.11.2010
Autor: Schmetterfee

Ja klar das war ein Tippfehler...Danke den Tipp werde ich mir merken...

LG Schmetterfee

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de