www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Beweis der Potenzgesetze
Beweis der Potenzgesetze < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis der Potenzgesetze: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:00 Fr 10.11.2006
Autor: Salvathras

Aufgabe
Beweisen Sie, dass für a,x,y (Elemente von R) , a>0 folgendes Gesetz gilt:
a^(x+y) = [mm] a^x [/mm] * [mm] a^y [/mm]

Mein Problem hierbei ist, dass wir - da noch nicht durchgenommen bzw. definiert - nicht den Logarithmus zur Beweisführung verwenden dürfen. Der einzige Tipp den ich bekam , war "Supremum, Infimum" was mir nicht wirklich geholfen hat.

Die andere Möglichkeit,  das Ganze mithilfe von Cauchyfolgen zu beweisen, darf laut meiner Übungsleiterin auch nicht verwendet werden (hierbei hänge ich zurzeit daran, lim (a^(x(n))) = [mm] a^x [/mm] zu beweisen).

Wäre wirklich nett wenn mir jemand hierbei helfen könnte . Ich komme irgendwie nicht auf den richtigen Gedanken (vllt. zu fokussiert?) und es wäre nett, wenn mir jemand mit der Lösung bzw. dem Ansatz helfen könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis der Potenzgesetze: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:52 Fr 10.11.2006
Autor: felixf

Hallo!

Schreib doch mal hierhin, wie ihr [mm] $a^x$ [/mm] fuer $a, x [mm] \in \IR$, [/mm] $a > 0$ ueberhaupt definiert habt. Die normale Definition ist [mm] $a^x [/mm] := [mm] \exp(x \cdot \ln(a))$, [/mm] aber wenn ihr schon den Logarithmus nicht benutzen duerft ist das sicher nicht eure Definition...

LG Felix


Bezug
                
Bezug
Beweis der Potenzgesetze: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:32 Fr 10.11.2006
Autor: Salvathras

Wir hatten die Exponentialfunktion für reelle Zahlen wie folgt definiert:

Für y>0, y e R:
[mm] S={a^x| x e Q, x <= y} [/mm]  
(wählten  nach archimed. Axiom eine Zahl N e N mit N>y , dann gilt [mm] a^x [/mm] <= [mm] a^N [/mm] für alle x<=y<N => [mm] a^N [/mm] ist die obere Schranke)
und definierten [mm] a^y [/mm] als Supremum der Menge

Für 0<y<=1, dann [mm] S={a^x | x e Q x<= y} [/mm]
Hierbei hat S ein Minimum mit [mm] a^y [/mm] als Infimum der Menge

(für y = 0 gilt [mm] a^0 [/mm] = 1 ; für a<0 gilt [mm] a^y [/mm] = 1/(a^-y))

Hab gerade beim Lesen der Definition zumindest einen Ansatz entdeckt, wäre trotzdem für Hilfe dankbar.

Bezug
        
Bezug
Beweis der Potenzgesetze: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:25 So 12.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de