www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Beweis der Stetigkeit
Beweis der Stetigkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis der Stetigkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 01:08 Fr 02.12.2005
Autor: cheesus

Aufgabe
Zeigen Sie durch Rückgriff auf die [mm] "$\varepsilon-\delta$"-Definition, [/mm] daß die durch
[mm] $f(x)=\bruch{x-1}{x^{2}+1}$ [/mm]

definierte Funktion $f :  [mm] \IR \to \IR$ [/mm] in [mm] $x_{0} [/mm] = -1$ stetig ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe ernsthafte probleme mit dieser aufgabe weil ich nicht weiß was ich mit der [mm] \varepsilon [/mm] -  [mm] \delta [/mm] - Definition Anfangen soll.

[mm] \varepsilon [/mm] -  [mm] \delta [/mm] - Definition:

[mm] \forall \varepsilon [/mm] > 0  [mm] \exists \delta(\varepsilon)>0 [/mm] : [mm] d(x,x_{0}) [/mm] < [mm] \delta(\varepsilon) \Rightarrow d'(f(x),f(x_{0})) [/mm] < [mm] \varepsilon [/mm]

Ich bin nu nicht die größte leucht und weiß echt nicht was ich damit anfangen soll.

Hoffentlich könnt ihr mir helfen

MfG cheesus

        
Bezug
Beweis der Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:43 Fr 02.12.2005
Autor: Mathe_Alex

Guten Morgen,

Statt [mm] d(x,x_{0}) [/mm] würde ich beim Rechnen Beträge schreiben, das wird anschaulicher. Also sieht es dann so aus:

[mm] \forall \varepsilon>0 \exists \delta>0 [/mm] : [mm] |x-x_{0}|<\delta =>|f(x)-f(x_{0}|< \varepsilon [/mm]

Nach Einsetzen des Punktes, in dem Du Stetigkeit prüfen sollst folgt:

[mm] \forall \varepsilon>0 \exists \delta>0 [/mm] : [mm] |x+1|<\delta [/mm] =>| [mm] \bruch{x-1}{x^{2}+1}+1|< \varepsilon [/mm]

Jetzt musst Du ein [mm] \delta [/mm] so wählen, dass die Folgerung stimmt. [mm] \delta [/mm] hängt von [mm] \varepsilon [/mm] ab. Hier musst Du jetzt ein bisschen gucken und rechnen.


Gruß
Alex



edit: habe mal  überlegt, bin mir aber nicht sicher, ob es stimmt, da wir das Zeug auch gerade erst machen :)
Also: falls x  [mm] \ge \bruch{x-1}{x^{2}+1} [/mm] wähle [mm] \delta=\varepsilon, [/mm] denn dann stimmt die Folgerung immer. |x+1|< [mm] \varepsilon [/mm] und x [mm] \ge \bruch{x-1}{x^{2}+1} [/mm] muss auch [mm] |\bruch{x-1}{x^{2}+1}+1|< \varepsilon [/mm] sein.  Beim anderen Fall bin ich mir noch weniger sicher, also lasse ich hin gleich aus :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de