www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Beweis des Satzes von Morera
Beweis des Satzes von Morera < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis des Satzes von Morera: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 Do 30.08.2007
Autor: Natalie2210

Hallo!
Ich habe folgende Version des Satzes von Morera vor mir liegen:

Sei [mm] U\subseteq \IC [/mm] offen und f:U-> [mm] \IC [/mm] stetig und für jede einschließlich Rand in U gelegene Dreiecksfläche gelte

[mm] \integral_{\gamma}{f(z) dz} [/mm] = 0

für die Randkurve [mm] \gamma [/mm] des Dreiecks. Dann ist f holomorph.

folgendes ist der Beweis dazu: Es genügt, den Satz für eine Kreisscheibe U zu beweisen, weil Holomorphie eine lokale Eigenschaft ist.  Sei also OBdA
U={z | |z|=r}.
Setze [mm] \alpha [/mm] z(t):=tz.
Dann ist
[mm] F(z):=\integral_{\alpha z}{f(z) dz} [/mm] eine Stammfunktion von f(z, denn für z0 aus U und
[mm] \beta [/mm] z(t):)= (1-t)*z0+tz ist

[mm] \bruch{F(z)-F(z0}{z-z0}=...=\integral_{0}^{1}{f((1-t)*z0+tz) dx} [/mm] und das geht für z->z0 gegen f(z0), womit die Holomorphie von F bewiesen wäre und f die Ableitung von F ist.
Da f die Ableitung einer holomorphen Funktion, ist f nach dem Satz von Goursat selbst holomorph.
                                                      [mm] \Box [/mm]

Ich verstehe nur nicht, wo die Vorraussetzung eingeht, dass das Integral von f über die Randkurven der in U gelegenen Dreiecke gleich Null sein muss!

Vielen dank für Hilfe im voraus,
Natalie

        
Bezug
Beweis des Satzes von Morera: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 Do 30.08.2007
Autor: rainerS

Hallo Natalie!

> Ich habe folgende Version des Satzes von Morera vor mir
> liegen:
>  
> Sei [mm]U\subseteq \IC[/mm] offen und [mm]f:U \rightarrow \IC[/mm] stetig und für jede
> einschließlich Rand in U gelegene Dreiecksfläche gelte
>  
> [mm]\integral_{\gamma}{f(z) dz} = 0 [/mm]
>
> für die Randkurve [mm]\gamma[/mm] des Dreiecks. Dann ist f holomorph.
>  
> folgendes ist der Beweis dazu: Es genügt, den Satz für eine
> Kreisscheibe U zu beweisen, weil Holomorphie eine lokale
> Eigenschaft ist.  Sei also OBdA
> [mm] U=\{z\mid |z|\leq r\}. [/mm]
> Setze [mm]\alpha z(t):=tz[/mm].
> Dann ist
> [mm]F(z):=\integral_{\alpha z}{f(z) dz}[/mm] eine Stammfunktion von [mm]f(z)[/mm], denn für [mm]z_0[/mm] aus U und
> [mm]\beta z(t):= (1-t)*z_0+tz[/mm] ist
>  
> [mm]\bruch{F(z)-F(z_0)}{z-z_0}=...=\integral_{0}^{1}{f((1-t)*z_0+tz) dt}[/mm]
> und das geht für [mm]z\rightarrow z_0[/mm] gegen [mm]f(z_0)[/mm], womit die Holomorphie
> von F bewiesen wäre und f die Ableitung von F ist.
> Da f die Ableitung einer holomorphen Funktion, ist f nach
> dem Satz von Goursat selbst holomorph.
> [mm]\Box[/mm]
>  
> Ich verstehe nur nicht, wo die Vorraussetzung eingeht, dass
> das Integral von f über die Randkurven der in U gelegenen
> Dreiecke gleich Null sein muss!

Bei der Herleitung der Gleichung für den Differenzenquotienten wird über das Dreieck mit den Eckpunkten 0, z und [mm]z_0[/mm] integriert. Das Integral entlang der Strecke von 0 bis z ergibt F(z), das Integral entlang der Strecke von 0 bis [mm]z_0[/mm] ergibt [mm]F(z_0)[/mm], und das Integral entlang [mm]\beta z(t)[/mm] ergibt nach der Substitution [mm]z\mapsto(1-t)*z_0+tz[/mm] gerade
[mm](z-z_0)*\integral_{0}^{1}{f((1-t)*z0+tz) dt}[/mm]

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de