www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Beweis durch Additionstheoreme
Beweis durch Additionstheoreme < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis durch Additionstheoreme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:38 Mi 21.10.2009
Autor: Kackfisch

Aufgabe
Zeigen sie unter Anwendung der Additionstheoreme der Winkelfunktionen:

[mm] \cos(\alpha) + \cos(\beta) = 2 * \cos(\bruch{\alpha+\beta}{2}) * \cos(\bruch{\alpha-\beta}{2})[/mm]

[mm] \cos(\alpha) - \cos(\beta) = -2 * \sin(\bruch{\alpha+\beta}{2}) * \sin(\bruch{\alpha-\beta}{2})[/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Diese Aufgabe lässt mich verzweifeln. Also bis jetzt habe ich immer mit folgender Idee angefangen:

[mm] \cos(\alpha) + \cos(\beta) = \cos(\bruch{\alpha}{2}+\bruch{\alpha}{2}) + \cos(\bruch{\beta}{2}+\bruch{\beta}{2})[/mm]

Nach Anwendung des 1. Additionstheorems erhalte ich etwas in der Art:

[mm]\cos^2(\bruch{\alpha}{2})-\sin^2(\bruch{\alpha}{2})+\cos^2(\bruch{\beta}{2})-\sin^2(\bruch{\beta}{2})[/mm]

Von dort aus habe ich versucht in verschiedene Wege weiter zu rechnen, aber leider war nichts wirklich von Erfolg gekrönt.
Ganz besonders schwer tuhe ich mich mit dem Ziel die beiden verschiedenen Winkel nachher im selben Argument zu haben.


Hat jemand von euch vielleicht einen Denkanstoß für mich, der mir weiterhelfen könnte?
Ist mein Grundansatz vieleicht absolut ungeschickt?
Ich danke schon mal für eure Antworten!

Kackfisch

        
Bezug
Beweis durch Additionstheoreme: Antwort
Status: (Antwort) fertig Status 
Datum: 23:56 Mi 21.10.2009
Autor: abakus


> Zeigen sie unter Anwendung der Additionstheoreme der
> Winkelfunktionen:
>  
> [mm]\cos(\alpha) + \cos(\beta) = 2 * \cos(\bruch{\alpha+\beta}{2}) * \cos(\bruch{\alpha-\beta}{2})[/mm]
>  
> [mm]\cos(\alpha) - \cos(\beta) = -2 * \sin(\bruch{\alpha+\beta}{2}) * \sin(\bruch{\alpha-\beta}{2})[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hallo,
Nutze die Tatsache, dass zwei Größen (hier alpha und beta) stets gleich weit von ihrem gemeinsamen Mittelwert (hier [mm] \bruch{\alpha + \beta}{2} [/mm] entfernt sind.
Es gilt [mm] \alpha=\bruch{\alpha + \beta}{2} [/mm] + [mm] \bruch{\alpha - \beta}{2} [/mm] und
[mm] \beta=\bruch{\alpha + \beta}{2} [/mm] - [mm] \bruch{\alpha - \beta}{2} [/mm]
Wende auf dieses Ausdrücke die bekannen Additiontheoreme für den Kosinus an.
Gruß Abakus

>  
> Diese Aufgabe lässt mich verzweifeln. Also bis jetzt habe
> ich immer mit folgender Idee angefangen:
>  
> [mm]\cos(\alpha) + \cos(\beta) = \cos(\bruch{\alpha}{2}+\bruch{\alpha}{2}) + \cos(\bruch{\beta}{2}+\bruch{\beta}{2})[/mm]
>  
> Nach Anwendung des 1. Additionstheorems erhalte ich etwas
> in der Art:
>  
> [mm]\cos^2(\bruch{\alpha}{2})-\sin^2(\bruch{\alpha}{2})+\cos^2(\bruch{\beta}{2})-\sin^2(\bruch{\beta}{2})[/mm]
>  
> Von dort aus habe ich versucht in verschiedene Wege weiter
> zu rechnen, aber leider war nichts wirklich von Erfolg
> gekrönt.
>  Ganz besonders schwer tuhe ich mich mit dem Ziel die
> beiden verschiedenen Winkel nachher im selben Argument zu
> haben.
>  
>
> Hat jemand von euch vielleicht einen Denkanstoß für mich,
> der mir weiterhelfen könnte?
>  Ist mein Grundansatz vieleicht absolut ungeschickt?
>  Ich danke schon mal für eure Antworten!
>  
> Kackfisch


Bezug
                
Bezug
Beweis durch Additionstheoreme: Dankeschön
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:34 Do 22.10.2009
Autor: Kackfisch

@ Abakus:

Mit deinem Tipp war die Lösung kein Problem mehr!
Ich wäre aber wahrscheinlich von alleine nicht auf diesen guten Ansatz gekommen.
Vielen Dank an dieser Stelle!

Gruß Kackfisch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de