www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Beweis durch VI
Beweis durch VI < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis durch VI: Aufgabe & Beginn
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:52 Fr 15.04.2005
Autor: Zange1980

[mm] \summe_{k=1}^{n} (2+k-1)^3=n²*(2*n²-1) [/mm] diese Aufgabe soll per VI bewiesen werden.
nach IA und IV mache ich beim IS
[mm] \summe_{k=1}^{n} (2*k-1)^3+(2*n-1)^3=n²*(2*n²-1)+(2*n-1)^3 [/mm]
ich habe versucht jetzt rauszubekommen ob ich durch vereinfachen ein Faktor finde der irgendwas *n²*(2*n²-1) lautet aber das funzt nicht. kann mir jemand  bitte auf die Sprünge helfen ist mein Gedankengang falsch? Was sollte als Lösung kommen?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis durch VI: Korrektur im Induktionsschritt
Status: (Antwort) fertig Status 
Datum: 14:04 Fr 15.04.2005
Autor: Loddar

Hallo Thomas!


> [mm]\summe_{k=1}^{n} (2\red{*}k-1)^3=n²*(2*n²-1)[/mm]
> diese Aufgabe soll per VI bewiesen werden.

> nach IA und IV mache ich beim IS
> [mm]\summe_{k=1}^{n} (2*k-1)^3+(2*n-1)^3=n²*(2*n²-1)+(2*n-1)^3[/mm]

[notok] Du mußt im IS folgendermaßen vorgehen ...

[mm]\summe_{k=1}^{n+1} (2*k-1)^3\ = \ \summe_{k=1}^{n} (2*k-1)^3 + \summe_{k=n+1}^{n+1} (2*k-1)^3 \ = \ \summe_{k=1}^{n} (2*k-1)^3 + \left[2*(n+1)-1\right]^3 \ = \ ...[/mm]


Wenn Du Dir nicht ganz sicher bist, kannst Du den zu zeigenden Ausdruck auch ausmultiplizieren und anschließend vergleichen ...


Gruß
Loddar


Bezug
                
Bezug
Beweis durch VI: gemacht, aber...
Status: (Frage) beantwortet Status 
Datum: 14:58 Fr 15.04.2005
Autor: Zange1980

ich komm trotzdem nicht weiter, wo soll mich das hinführen??
so wie ich das jetzt verstanden habe kommt nach deiner weisen Hilfestellung
[mm] \summe_{k=1}^{n}(2*k-1)^3+ \summe_{k=n+1}^{n+1}(2*n+1)^3=n²*(2*n²-1)+(2*n+1)^3 [/mm]
nachdem ich das ausmultipliziert habe steht bei mir dann [mm] 8*n^3+12*n²+6*n+1 [/mm] das problem bei mir ist ich weiß nicht was ungefähr rauskommen müsste demzufolge hänge ich an der stelle fest (kann das bitte mal  jemand für einen Geisteswissenschaftler nachvollziehbar erklären?)
danke für die mühe

Bezug
                        
Bezug
Beweis durch VI: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Fr 15.04.2005
Autor: Max

Hallo Thomas,

wenn du die Bedingung für $n+1$ aufschreibst erhältst du [mm] $\sum_{k=1}^{n+1}(2k-1)^3=(n+1)^2(2(n+1)^2-1)$, [/mm] multiplizierst du dies aus, so erhälst du deinen Term.

Gruß Max






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de