www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Beweis einer Bijektion
Beweis einer Bijektion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis einer Bijektion: Vorgehensweise
Status: (Frage) beantwortet Status 
Datum: 08:12 Di 30.08.2016
Autor: Windbeutel

Aufgabe
Es sei r ein Bruch der Form [mm] \bruch{n}{m}, [/mm] für den gilt:

n [mm] =\begin{cases} \bruch{1}{2}*n, & \mbox{für } n \mbox{ gerade} \\ \bruch{1}{2}*(n-1), & \mbox{für } n \mbox{ ungerade} \end{cases} [/mm]

m [mm] =\begin{cases} \bruch{1}{2}*m, & \mbox{für } m \mbox{ gerade} \\ \bruch{1}{2}*(m+1), & \mbox{für } m \mbox{ ungerade} \end{cases} [/mm]

Zeigen Sie, dass für allen  n und m [mm] \in \IN [/mm] die gegebene Funktion eine Bijektion ist

Hallo,
ich versuche mich an der oben gegebenen Aufgabe.
Dummerweis komme ich damit nicht wirklich weiter.

Bisher galt folgende Vorgehensweise:
Setze [mm] f(x_1) [/mm] = [mm] f(x_2) [/mm] voraus. Zeige mit dem direkten Beweis [mm] x_1 [/mm] = [mm] x_2 [/mm] für die injektivität.

Für den Beweis der surjektivität nim ein beliebiges y aus dem Bildbereich und zeige dann, dass ein x im Definitionsbereich mit f(x) = y existiert.

Bei dieser Aufgabe komme ich mit meinem gewohnten Muster nicht wirklich weiter und brauche dringend Hilfe.
Ich finde einfach keinen Zugang zu dieser Aufgabe und bin für jede Hilfe dankbar.

        
Bezug
Beweis einer Bijektion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 Di 30.08.2016
Autor: Chris84

Hallo,
ich fuerchte, da ist einiges schief gegangen...

> Es sei r ein Bruch der Form [mm]\bruch{n}{m},[/mm] für den gilt:
>  
> n [mm]=\begin{cases} \bruch{1}{2}*n, & \mbox{für } n \mbox{ gerade} \\ \bruch{1}{2}*(n-1), & \mbox{für } n \mbox{ ungerade} \end{cases}[/mm]

Das kann doch nicht gehen!? Wenn $n=4$, dann steht da doch $4=2$. Das kann doch nicht sein. Ueberpruefe das bitte!

>  
> m [mm]=\begin{cases} \bruch{1}{2}*m, & \mbox{für } m \mbox{ gerade} \\ \bruch{1}{2}*(m+1), & \mbox{für } m \mbox{ ungerade} \end{cases}[/mm]

Ebenso hier.

>  
> Zeigen Sie, dass für allen  n und m [mm]\in \IN[/mm] die gegebene
> Funktion eine Bijektion ist

Welche Funktion denn!? Ich sehe keine Funktion...

>  Hallo,
>  ich versuche mich an der oben gegebenen Aufgabe.
>  Dummerweis komme ich damit nicht wirklich weiter.

Ich so auch nicht!

>  
> Bisher galt folgende Vorgehensweise:
>  Setze [mm]f(x_1)[/mm] = [mm]f(x_2)[/mm] voraus. Zeige mit dem direkten
> Beweis [mm]x_1[/mm] = [mm]x_2[/mm] für die injektivität.

Was soll in dieser Aufgabe denn $f$ sein?

>  
> Für den Beweis der surjektivität nim ein beliebiges y aus
> dem Bildbereich und zeige dann, dass ein x im
> Definitionsbereich mit f(x) = y existiert.

Ebenso hier. Was ist $f$?

>  
> Bei dieser Aufgabe komme ich mit meinem gewohnten Muster
> nicht wirklich weiter und brauche dringend Hilfe.
>  Ich finde einfach keinen Zugang zu dieser Aufgabe und bin
> für jede Hilfe dankbar.

Hmm, einmal bitte die Aufgabenstellung ueberpruefen. Dann kann man dir sicher helfen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de