www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Beweis: einer Folge
Beweis: einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis: einer Folge: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:52 So 27.11.2011
Autor: anabiene

Aufgabe
[mm] a_n>0 [/mm] ist eine Folge mit [mm] \limes_{n\rightarrow\infty}\bruch{a_{n+1}}{a_n}=q. [/mm] Jetzt soll ich zeigen, dass [mm] \limes_{n\rightarrow\infty}(a_n)^\bruch{1}{n}=q [/mm] ist

was beudeutet [mm] \limes_{n\rightarrow\infty}\bruch{a_{n+1}}{a_n}=q. [/mm] genau, heißt das, dass wenn [mm] (a_n) [/mm] zb. die folge [mm] \bruch{1}{n} [/mm] ist, dass dann [mm] (a_{n+1}) [/mm] die folge [mm] \bruch{1}{n+1} [/mm] ist?

wenn ja, glaube ich würde die folge passen: [mm] a_n=q^n, [/mm] oder?

        
Bezug
Beweis: einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 So 27.11.2011
Autor: kamaleonti

Hallo anabiene,
> [mm]a_n>0[/mm] ist eine Folge mit [mm]\limes_{n\rightarrow\infty}\bruch{a_{n+1}}{a_n}=q.[/mm] Jetzt
> soll ich zeigen, dass [mm]\limes_{n\rightarrow\infty}(a_n)^\bruch{1}{n}=q[/mm] ist
>
> was beudeutet [mm]\limes_{n\rightarrow\infty}\bruch{a_{n+1}}{a_n}=q.[/mm] genau,
> heißt das, dass wenn [mm](a_n)[/mm] zb. die folge [mm]\bruch{1}{n}[/mm] ist, dass dann [mm](a_{n+1})[/mm] die folge [mm]\bruch{1}{n+1}[/mm] ist?

Nein! [mm] a_{n+1} [/mm] ist das Folgenglied, dass nach [mm] a_n [/mm] in der Folge [mm] (a_n) [/mm] kommt.
Der Quotient aufeinanderfolgender Folgenglieder konvergiert hier also gegen q.

>  
> wenn ja, glaube ich würde die folge passen: [mm]a_n=q^n,[/mm] oder?

Es geht nicht darum, eine passende Folge zu finden! Die Aussage soll für alle Folgen gezeigt werden, für die die Voraussetzung erfüllt sind.

Tipp für die Aufgabe:

       [mm] a_n=a_0\prod_{i=1}^n\frac{a_n}{a_{n-1}} [/mm]


LG

Bezug
                
Bezug
Beweis: einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:26 So 27.11.2011
Autor: anabiene

achso... bei je 2 aufeinanderfolgende folgengliedern konvergiert ihr quotient gegen q...

mit dem tipp hab ich so meine schwierigkeiten. [mm] a_n=a_0\prod_{i=1}^n\frac{a_n}{a_{n-1}}=a_0\bruch{ a_1\cdot a_2\cdot a_3\cdot ... \cdot a_{n-1}\cdot a_n}{a_0\cdot a_1\cdot a_2\cdot a_3\cdot ... \cdot a_{n-1}} [/mm] kommt ja [mm] a_n [/mm] wieder raus am ende, oder?

Bezug
                        
Bezug
Beweis: einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 So 27.11.2011
Autor: leduart

Hallo
ja, sonst wär das = ja falsch, aber jetzt hast du [mm] a_n [/mm] durch Quotienten ersetzt.
und über [mm] a_n [/mm] willst du ja was wissen und über die Quotienten weiss du was.
Gruss leduart

Bezug
                                
Bezug
Beweis: einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:48 So 27.11.2011
Autor: anabiene

[mm] a_k=a_0\prod_{i=1}^k\frac{a_k}{a_{k-1}}=a_0\bruch{ a_1\cdot a_2\cdot a_3\cdot ... \cdot a_{k-1}\cdot a_k}{a_0\cdot a_1\cdot a_2\cdot a_3\cdot ... \cdot a_{k-1}}=q\cdot q\cdot [/mm] ... [mm] \cdot q\cdot a_0 [/mm] = [mm] q^k\cdot a_0 [/mm]

danke für eure antworten :-) warum macht es bei mir nicht klick?! könnt ihr mir nochmal weiterhelfen?

Bezug
                                        
Bezug
Beweis: einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 01:08 Mo 28.11.2011
Autor: leduart

Hallo
es ist nicht [mm] a_5/a_4= [/mm] q sondern nur der GW  von [mm] a_{n+1}/a_n=q [/mm]
deshalb ist dine kette falsch.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de