www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Naive Mengenlehre" - Beweis einer Gleichung
Beweis einer Gleichung < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis einer Gleichung: Gleichung korrekt bewiesen?
Status: (Frage) beantwortet Status 
Datum: 01:23 Sa 18.04.2009
Autor: MeinNameIstHase

Aufgabe
Beweisen Sie folgende Aussage:

A [mm] \cap [/mm] (B [mm] \cup [/mm] C) = (A [mm] \cap [/mm] B) [mm] \cup [/mm] (A [mm] \cap [/mm] C)

[Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.]

Hallo liebe Forenmitglieder,

die Aufgabe stammt aus dem Buch "Mathematisch-strukturelle Grundlagen der Informatik",
leider gibt es zu den Übungsaufgaben keine Lösungen, aber vielleicht könnt Ihr mir sagen,
ob ich mit meinem Versuch auf dem richtigen Weg bin.

-----------------------------------------------------------------------------------------
Los geht's:

An einer ähnlichen Aufgabe wurde der Beweis in zwei Schritten geführt:

  1. Nachweis, daß der linke Term Teilmenge des Rechten ist und
  2. Nachweis, daß der rechte Term Teilmenge des Linken ist. Also:


  zu 1.

    Sei x [mm] \in [/mm] A [mm] \cap [/mm] (B [mm] \cup [/mm] C) [mm] \Rightarrow [/mm] (x [mm] \in [/mm] A) [mm] \wedge [/mm] (x [mm] \in [/mm] B) [mm] \Rightarrow [/mm] (A [mm] \cap [/mm] B) [mm] \cup [/mm] (A [mm] \cap [/mm] C)

    oder

    Sei x [mm] \in [/mm] A [mm] \cap [/mm] (B [mm] \cup [/mm] C) [mm] \Rightarrow [/mm] (x [mm] \in [/mm] A) [mm] \wedge [/mm] (x [mm] \in [/mm] C) [mm] \Rightarrow [/mm] (A [mm] \cap [/mm] B) [mm] \cup [/mm] (A [mm] \cap [/mm] C)



  zu 2.

    Sei x [mm] \in [/mm] (A [mm] \cap [/mm] B) [mm] \Rightarrow [/mm] (x [mm] \in [/mm] A) [mm] \wedge [/mm] (x [mm] \in [/mm] B)  [mm] \Rightarrow [/mm] x [mm] \in [/mm] A [mm] \cap [/mm] (B [mm] \cup [/mm] C)

    oder

    Sei x [mm] \in [/mm] (A [mm] \cap [/mm] C) [mm] \Rightarrow [/mm] (x [mm] \in [/mm] A) [mm] \wedge [/mm] (x [mm] \in [/mm] C)  [mm] \Rightarrow [/mm] x [mm] \in [/mm] A [mm] \cap [/mm] (B [mm] \cup [/mm] C)


  Damit sollte doch A [mm] \cap [/mm] (B [mm] \cup [/mm] C) = (A [mm] \cap [/mm] B) [mm] \cup [/mm] (A [mm] \cap [/mm] C) bewiesen sein?

-----------------------------------------------------------------------------------------

Da Beweisen für mich völlig neu ist, folgende FRAGEN:

1.) Kann man das so schreiben (und Beweis nennen) ??? :)
2.) Wie würdet Ihr das (mathematisch und formell korrekt) machen?


Danke schonmal für Eure Mühe,
Gruß, Jens

        
Bezug
Beweis einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 02:27 Sa 18.04.2009
Autor: Marcel

Hallo,

> Beweisen Sie folgende Aussage:
>  
> A [mm]\cap[/mm] (B [mm]\cup[/mm] C) = (A [mm]\cap[/mm] B) [mm]\cup[/mm] (A [mm]\cap[/mm] C)
>  [Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.]
>  
> Hallo liebe Forenmitglieder,
>  
> die Aufgabe stammt aus dem Buch "Mathematisch-strukturelle
> Grundlagen der Informatik",
>  leider gibt es zu den Übungsaufgaben keine Lösungen, aber
> vielleicht könnt Ihr mir sagen,
>  ob ich mit meinem Versuch auf dem richtigen Weg bin.
>  
> -----------------------------------------------------------------------------------------
>  Los geht's:
>  
> An einer ähnlichen Aufgabe wurde der Beweis in zwei
> Schritten geführt:
>  
> 1. Nachweis, daß der linke Term Teilmenge des Rechten ist
> und
>    2. Nachweis, daß der rechte Term Teilmenge des Linken
> ist. Also:
>  
>
> zu 1.
>
> Sei x [mm]\in[/mm] A [mm]\cap[/mm] (B [mm]\cup[/mm] C) [mm]\Rightarrow[/mm] (x [mm]\in[/mm] A) [mm]\wedge[/mm] (x[mm]\in[/mm] B) [mm]\Rightarrow[/mm] [mm] $\red{x \in } [/mm] (A [mm]\cap[/mm] B) [mm]\cup[/mm] (A [mm]\cap[/mm] C)
>  
> oder
>  
> Sei x [mm]\in[/mm] A [mm]\cap[/mm] (B [mm]\cup[/mm] C) [mm]\Rightarrow[/mm] (x [mm]\in[/mm] A) [mm]\wedge[/mm] (x [mm]\in[/mm] C) [mm]\Rightarrow[/mm] [mm] $\red{x \in }$ [/mm] (A [mm]\cap[/mm] B) [mm]\cup[/mm] (A [mm]\cap[/mm] C)

Du hattest das [mm] $\red{x \in }$ [/mm] am Ende vergessen. Ich finde nur, Deine Logik ist verwirrend:
Du solltest nicht schreiben:
$$x [mm] \in [/mm] A [mm] \cap [/mm] (B [mm] \cup [/mm] C) [mm] \Rightarrow [/mm] x [mm] \in [/mm] A [mm] \wedge [/mm] x [mm] \in [/mm] B$$
oder
$$x [mm] \in [/mm] A [mm] \cap [/mm] (B [mm] \cup [/mm] C) [mm] \Rightarrow [/mm] x [mm] \in [/mm] A [mm] \wedge [/mm] x [mm] \in C\,.$$ [/mm]

Ich fände es besser, zu schreiben:
$$x [mm] \in [/mm] A [mm] \cap [/mm] (B [mm] \cup [/mm] C) [mm] \Rightarrow [/mm] (x [mm] \in [/mm] A [mm] \wedge [/mm] x [mm] \in [/mm] (B [mm] \cup [/mm] C)) [mm] \Rightarrow [/mm] (x [mm] \in [/mm] A [mm] \wedge [/mm] (x [mm] \in [/mm] B [mm] \vee [/mm] x [mm] \in [/mm] C)) [mm] \Rightarrow [/mm] ((x [mm] \in [/mm] A [mm] \wedge [/mm] x [mm] \in [/mm] B) [mm] \vee [/mm] (x [mm] \in [/mm] A [mm] \wedge [/mm] x [mm] \in [/mm] C))$$
$$ [mm] \Rightarrow [/mm] x [mm] \in [/mm] (A [mm] \cap [/mm] B) [mm] \cup [/mm] (A [mm] \cap C)\,.$$ [/mm]
(Das finde ich besser, weil hier die Definition von [mm] $\cup$ [/mm] ersichtlich ist. Zudem werden die 'logischen Regeln' von de Morgan angewendet.)

Ich fände es allerdings anfänglich sogar besser, es so zu schreiben:
Es sei $x [mm] \in [/mm]  A [mm] \cap [/mm] (B [mm] \cup [/mm] C)$. Dann gilt $x [mm] \in [/mm] A$ und ($x [mm] \in [/mm] B$ oder $x [mm] \in [/mm] C$). Es können also zwei Fälle eintreten:

1. Fall: Sei $x [mm] \in [/mm] A$ und $x [mm] \in B\,,$ [/mm] dann folgt...

2. Fall: Sei $x [mm] \in [/mm] A$ und $x [mm] \in C\,,$ [/mm] dann folgt...

Dein Grundgedanke war schon okay, aber wenn Du
$$R [mm] \Rightarrow [/mm] S$$
oder
$$R [mm] \Rightarrow [/mm] T$$
schreibst, so meint das, dass mindestens eine der beiden Folgerungen $R [mm] \Rightarrow S\,,$ [/mm] $R [mm] \Rightarrow [/mm] T$ korrekt ist. Ich finde, das wird nicht ganz klar, wie das oben bei Dir zustandekommt.

> zu 2.

Sei [mm] $\red{x \in (A \cap B) \cup (A \cap C)}\,.$ [/mm] Dann gilt [mm] $\red{x \in A \cap B}$ [/mm] oder [mm] $\red{x \in A \cap C}\,,$es [/mm] können also zwei Fälle eintreten:

> 1. Fall: Sei x [mm]\in[/mm] (A [mm]\cap[/mm] B) [mm]\Rightarrow[/mm] (x [mm]\in[/mm] A) [mm]\wedge[/mm] (x [mm]\in[/mm] B)
>  [mm]\Rightarrow[/mm] x [mm]\in[/mm] A [mm]\cap[/mm] (B [mm]\cup[/mm] C) (die letzte Folgerung gilt wegen [mm] $\red{B \subset (B \cup C)}$) [/mm]
>  
> oder
> 2. Fall:  
> Sei x [mm]\in[/mm] (A [mm]\cap[/mm] C) [mm]\Rightarrow[/mm] (x [mm]\in[/mm] A) [mm]\wedge[/mm] (x [mm]\in[/mm] C)
>  [mm]\Rightarrow[/mm] x [mm]\in[/mm] A [mm]\cap[/mm] (B [mm]\cup[/mm] C) (die letzte Folgerung gilt wegen [mm] $\red{C \subset (B \cup C)}$) [/mm]
>
>
> Damit sollte doch A [mm]\cap[/mm] (B [mm]\cup[/mm] C) = (A [mm]\cap[/mm] B) [mm]\cup[/mm] (A [mm]\cap[/mm] C) bewiesen sein?
>  
> -----------------------------------------------------------------------------------------
>  
> Da Beweisen für mich völlig neu ist, folgende FRAGEN:
>  
> 1.) Kann man das so schreiben (und Beweis nennen) ??? :)

Ja, wie gesagt, ich würde den ersten Beweisteil 'umschreiben', aber ansonsten ist das okay.

>  2.) Wie würdet Ihr das (mathematisch und formell korrekt)
> machen?

Das war i.W. in Ordnung, ich habe nur ein paar Anmerkungen gemacht.

Gruß,
Marcel

Bezug
                
Bezug
Beweis einer Gleichung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:55 Sa 18.04.2009
Autor: MeinNameIstHase

Hi Marcel,

danke für Deine schnelle Antwort und die nützlichen Tips,
haben mir sehr geholfen.

Gruß, Jens

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de