www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Beweis einer Mengengleichung
Beweis einer Mengengleichung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis einer Mengengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 Di 25.10.2005
Autor: stockihorsti

Hallo,

ich soll zeigen, dass folgende Gleichung gilt:
$ [mm] A\Delta(B \Delta C)=(A\Delta B)\Delta [/mm] C $
wobei $ [mm] A\Delta [/mm] B [mm] =(A\backslash B)\cup (B\backslash [/mm] A) $ gilt.
In einem anderen Thread habe ich gelesen, dass man sich nun z.B. ein x nimmt, von dem man annimmt, dass es in der Menge enthalten ist. Ich habe versucht mit der linken Seite zu beginnen und bin dann auf ein Problem gestossen.
$ x [mm] \in (A\backslash ((B\backslash C)\cup (C\backslash B))\cup (((B\backslash [/mm] C ) [mm] \cup (C\backslash [/mm] B [mm] ))\backslash A))\gdw \ldots \gdw x\in A\wedge x\not\in ((B\backslash C)\cup (C\backslash B))\wedge x\in ((B\backslash C)\cup (C\backslash B))\wedge x\not\in [/mm] A  $
Das erscheint mir irgendwie wie ein Widerspruch, oder ist falsch. Könnt Ihr mir sagen, ob dieser Ansatz überhaupt sinnvoll ist oder mir einen anderen nennen?
Das wäre echt super. Stehe mächtig auf dem Schlauch.

Viele Grüße
stockihorsti

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis einer Mengengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:38 Di 25.10.2005
Autor: Stefan

Hallo!

Um Gottes Willen! Wer hat denn dazu geraten?

Mache es am besten so wie []hier auf Seite 36...

Liebe Grüße
Stefan

Bezug
                
Bezug
Beweis einer Mengengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Di 25.10.2005
Autor: stockihorsti

Hallo Stefan,

vielen Dank. Nur leider mögen die Korrektoren keine Abbildungen als Beweis. Ich suche also einen "ausformulierten" Weg.

Viele Grüße.
Simon

Bezug
                        
Bezug
Beweis einer Mengengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Di 25.10.2005
Autor: taura

Hallo Simon!

Ich glaube, was Stefan meinte, ist, dass du dir den Tipp mit dem "exklusiven oder" und der Wahrheitstafel zu Herzen nehmen sollst.

[mm] $A\Delta [/mm] B$ bedeutet hier ja nichts anderes als [mm] $(A\cup B)\backslash(A\cap [/mm] B)$. Sprich die Menge, in der entweder Elemente aus A oder Elemente aus B liegen. Das heißt [mm] $x\in A\Delta [/mm] B$ ist gleichbedeutend mit [mm] $x\in [/mm] A\ [mm] \dot\vee\ x\in [/mm] B$ wobei [mm] $\dot\vee$ [/mm] das "exklusive oder" sein soll.

Du kannst also mit einer Wahrheitstafel die Assoziativität des "exklusiven oder" zeigen, dann gilt auch die Assoziativität von [mm] $\Delta$. [/mm]

Gruß taura

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de