www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Beweis eines Grenzwertsatzes
Beweis eines Grenzwertsatzes < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis eines Grenzwertsatzes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:52 So 02.07.2006
Autor: didi_160

Aufgabe
Zeigen Sie: Ist [mm] f:(0,\infty) \to \IR [/mm] eine Funktion und  h: [mm] (0,\infty) \to \IR^+ [/mm]  eine stetig wachsende Funktion,  mit  [mm] \limes_{t\rightarrow\infty}h(t) [/mm] = [mm] \infty, [/mm] so folgt aus
[mm] \limes_{t\rightarrow\infty} [/mm] f(h(t)) = c auch   [mm] \limes_{t\rightarrow\infty}f(t) [/mm] = c.  

Die mathematische Aussage bei der Grenzwertberechnung anzuwenden traue ich mir zu.
Aber die Aussage beweisen kann ich nicht. Ich habe auch beim Stöbern in Büchern einen derartigen Beweis nicht gefunden, in meiner Vorlesungsmitschrift so wie so nicht.  Dort findet man nur eine endlose Aneinanderreihung von "Definitionen" und "Notizen". Derartige Beweise sind "Übungsaufgaben".
Aber ich will hier im Forum nicht schimpfen, sondern mich lieber an das lateinische Wörtchen "studere" erinnen, was frei übersetzt: "sich bemühen" bedeutet!

Wer unterstützt mch ein wenig bei meinen "Bemühungen" eine Lösung zu der Aufgabe zu finden???

Einen schönen sonnigen Sonntag und besten Dank im Voraus.
Gruß didi_160


        
Bezug
Beweis eines Grenzwertsatzes: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 So 02.07.2006
Autor: Hanno

Hallo Didi.

Zu zeigen ist, dass [mm] $\lim_{t\to\infty} [/mm] f(t) = c$ gilt. Was heißt das? Das heißt, dass für alle [mm] $\epsilon>0$ [/mm] ein [mm] $t_\epsilon$ [/mm] so existiert, dass [mm] $|f(t)-c|<\epsilon$ [/mm] für alle [mm] $t\geq t_{\epsilon}$ [/mm] gilt.

Weiterhin ist bekannt, dass es zu jedem solchen [mm] $\epsilon$ [/mm] ein [mm] $t_{\epsilon}$ [/mm] so gibt, dass [mm] $f(h(t))-c|<\epsilon$ [/mm] für alle [mm] $t\geq t_\epsilon$ [/mm] gilt.

Um nun beides in Verbindung zu bringen, musst du verwenden, dass wegen der Monotonie von $h$ die Äquivalenz [mm] $t\geq t_{\epsilon}\gdw h(t)\geq h(t_{\epsilon})$ [/mm] gilt und es wegen der Stetigkeit zu jedem [mm] $k\geq h(t_{\epsilon})$ [/mm] ein [mm] $t\geq t_{\epsilon}$ [/mm] mit $h(t)=k$ gibt.


Versuche nun, das alles zu einem Beweis zusammenzufügen.


Liebe Grüße,
Hanno

Bezug
                
Bezug
Beweis eines Grenzwertsatzes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 So 02.07.2006
Autor: didi_160

Besten Dank Hanno,

jetzt habe ich erst mal einen Anfang.
Ich werde versuchen ob ich das hinkriege.

du schreibst:

> Um nun beides in Verbindung zu bringen, musst du verwenden,
> dass wegen der Monotonie von [mm]h[/mm] die Äquivalenz [mm]t\geq >t_{\epsilon}\gdw h(t)\geq h(t_{\epsilon})[/mm]
> gilt und es wegen der Stetigkeit zu jedem [mm]k\geq h(t_{\epsilon})[/mm]
> ein [mm]t\geq t_{\epsilon}[/mm] mit [mm]h(t)=k[/mm] gibt.

Wie ich beiden Aussagen verbinden soll weiß ich leider nicht.
gibst du mir noch einen Tipp?

Beste Grüße!
didi

Bezug
                        
Bezug
Beweis eines Grenzwertsatzes: Antwort
Status: (Antwort) fertig Status 
Datum: 16:17 So 02.07.2006
Autor: Hanno

Hallo Didi.

> Wie ich beiden Aussagen verbinden soll weiß ich leider nicht.
> gibst du mir noch einen Tipp?

Okay. Ich behaupte: für alle [mm] $t\geq h(t_{\epsilon})$ [/mm] gilt [mm] $|f(t)-c|<\epsilon$. [/mm] Kannst du dies beweisen?

Bedenke, wie [mm] $t_{\epsilon}$ [/mm] definiert war: so, dass für alle [mm] $t\geq t_{\epsilon}$ [/mm] stets [mm] $|f(h(t))-c|<\epsilon$ [/mm] gilt.

Beachte weiterhin die Äquivalenz, die ich in meinem vorigen Post nannte.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de