www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Beweis im deduktiven System
Beweis im deduktiven System < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis im deduktiven System: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:56 Do 02.06.2005
Autor: squeezer

Hallo.
Ich bin mir nicht sicher ob diese Frage hier rein passt, aber ich stell sie mal:

Zu geben ist ein Beweis im deduktiven System $ [mm] \cal{F}_0$ [/mm] für
[mm] $\vdash_{ \cal{F}_{0}} [/mm] B [mm] \to [/mm] (A [mm] \to [/mm] A)$
Dabei darf das Dedutkionstheorem nicht verwendet werden, sondern nur die Axiome, die Modus Ponens Regel und das Theorem:
[mm] $\vdash_{ \cal{F}_{0}}(A \to [/mm] B) [mm] \to [/mm] ((B [mm] \to [/mm] C) [mm] \to [/mm] (A [mm] \to [/mm] C))$


vielen Dank für Ihre Hilfe

P.S: Bei den Axiomen handelt es sich um:
$A [mm] \to [/mm] (B [mm] \to [/mm] A)$
$(A [mm] \to [/mm] B) [mm] \to [/mm] ((B [mm] \to [/mm] C) [mm] \to [/mm] (A [mm] \to [/mm] C))$
[mm] $((\neg [/mm] A) [mm] \to (\neg [/mm] B)) [mm] \to [/mm] (B [mm] \to [/mm] A)$


        
Bezug
Beweis im deduktiven System: Erklärungen?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:27 Fr 03.06.2005
Autor: Bastiane

Hallo!
Leider kann ich mit den Begrifflichkeiten nichts anfangen. Aber da du Informatik studierst und mir diese komischen Zeichen bekannt vorkommen, könnte es sein, dass ich dir evtl. helfen kann, wenn du ein bisschen was erklärst, was das überhaupt bedeutet (ich habe schon theoretische Informatik gehört - dazu gehört es doch, oder?

> Zu geben ist ein Beweis im deduktiven System [mm]\cal{F}_0[/mm] für
>  [mm]\vdash_{ \cal{F}_{0}} B \to (A \to A)[/mm]
>  Dabei darf das
> Dedutkionstheorem nicht verwendet werden, sondern nur die
> Axiome, die Modus Ponens Regel und das Theorem:
>  [mm]\vdash_{ \cal{F}_{0}}(A \to B) \to ((B \to C) \to (A \to C))[/mm]
>  
>
> vielen Dank für Ihre Hilfe
>  
> P.S: Bei den Axiomen handelt es sich um:
>  [mm]A \to (B \to A)[/mm]
>  [mm](A \to B) \to ((B \to C) \to (A \to C))[/mm]
>  
> [mm]((\neg A) \to (\neg B)) \to (B \to A)[/mm]

Viele Grüße
Bastiane
[banane]
  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de