www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Beweis kommutativer Monoide
Beweis kommutativer Monoide < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis kommutativer Monoide: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 Sa 12.11.2011
Autor: Zero-Zero

Aufgabe
Für alle a,b [mm] \in \IQ [/mm] setzen wir [mm] a\Delta [/mm] b:= ab+a+b

(a) Zeigen Sie, dass [mm] (\IZ, \Delta) [/mm] ein kommutatives Monoid ist und bestimmen Sie alle bezüglich [mm] \Delta [/mm] invertierbaren Elemente von [mm] \IZ. [/mm]

(b) Zeigen Sie, dass [mm] (\IQ [/mm] \ {1}, [mm] \Delta) [/mm] eine abelsche Gruppe ist

HINWEIS: Man zeige zunächst, dass auch [mm] (\IQ, \Delta) [/mm] kommutatives Monoid ist. Hierzu ist vielleicht die Beziehung a [mm] \Delta [/mm] b = (a+1)(b+1) -1 hilfreich.

Da ich zunächst zeigen soll, dass auch [mm] (\IQ, \Delta) [/mm] ein kommutatives Monoid ist, habe ich zuerst die Assoziativität folgendermaßen bewiesen:

a [mm] \Delta [/mm] b = (a+1)(b+1)-1 = ab+a+b+1-1= ab+a+b [mm] \to [/mm] (ab+a)+b = ab+(a+b) [mm] \Box [/mm]

Und die Kommutativität so:
ab+a+b = ab+b+a = b+a+ab = b+ab+a = a+ab+b = a+b+ab [mm] \Box [/mm]

Was mir jetzt Probleme macht, ist nachzuweisen, was hier das neutrale Element e ist. Oder gibt es hier zwei neutrale Elemente?

Die zweite Frage habe ich zu den invertierbaren Elementen. Ich weiß, dass a^*x a = e ist. Wie gehe ich hier den formalen Beweis an?

Vielen Dank für eure Hilfe!

        
Bezug
Beweis kommutativer Monoide: Antwort
Status: (Antwort) fertig Status 
Datum: 22:15 Sa 12.11.2011
Autor: mathfunnel

Hallo Zero-Zero!

> Für alle a,b [mm]\in \IQ[/mm] setzen wir [mm]a\Delta[/mm] b:= ab+a+b
>  
> (a) Zeigen Sie, dass [mm](\IZ, \Delta)[/mm] ein kommutatives Monoid
> ist und bestimmen Sie alle bezüglich [mm]\Delta[/mm] invertierbaren
> Elemente von [mm]\IZ.[/mm]
>  
> (b) Zeigen Sie, dass [mm](\IQ[/mm] \ {1}, [mm]\Delta)[/mm] eine abelsche
> Gruppe ist

Schreibfehler!!!

>  
> HINWEIS: Man zeige zunächst, dass auch [mm](\IQ, \Delta)[/mm]
> kommutatives Monoid ist. Hierzu ist vielleicht die
> Beziehung a [mm]\Delta[/mm] b = (a+1)(b+1) -1 hilfreich.
>  Da ich zunächst zeigen soll, dass auch [mm](\IQ, \Delta)[/mm] ein
> kommutatives Monoid ist, habe ich zuerst die
> Assoziativität folgendermaßen bewiesen:
>
> a [mm]\Delta[/mm] b = (a+1)(b+1)-1 = ab+a+b+1-1= ab+a+b [mm]\to[/mm] (ab+a)+b
> = ab+(a+b) [mm]\Box[/mm]

?

>
> Und die Kommutativität so:
>  ab+a+b = ab+b+a = b+a+ab = b+ab+a = a+ab+b = a+b+ab [mm]\Box[/mm]

?
Für die Kommutativität von $ [mm] (\mathbb [/mm] Q, [mm] \Delta) [/mm] $ muss $a [mm] \Delta [/mm]  b = b [mm] \Delta [/mm]  a$ für alle $a,b [mm] \in \mathbb [/mm] Q$ gezeigt werden.

Für die Assoziativität musst Du nachweisen, dass $(a [mm] \Delta b)\Delta [/mm] c = a [mm] \Delta (b\Delta [/mm] c)$  für alle $a,b,c [mm] \in \mathbb [/mm] Q$ ist.
Mit dem Hinweis, der Kommutativität von [mm] $\Delta$ [/mm] und der Symmetrie des resultierenden Ausdrucks ist das wahrscheinlich leichter einzusehen, als beide Ausdrücke auszuschreiben und zu vergleichen.

>  
> Was mir jetzt Probleme macht, ist nachzuweisen, was hier
> das neutrale Element e ist.

Jemand mit deinem Namen sollte es herausfinden!

> Oder gibt es hier zwei neutrale
> Elemente?

Gibt es zwei? ($e'e = e = e'$)

Das eine neutrale Element $e$ erhält man durch Lösen der Gleichung $e [mm] \Delta [/mm] a = ea+e+a =a $.

>
> Die zweite Frage habe ich zu den invertierbaren Elementen.
> Ich weiß, dass a^*x a = e ist. Wie gehe ich hier den
> formalen Beweis an?

Für ein inverses Element $a'$ zu $a$ gilt: [mm] $a'\Delta [/mm] a = a'a +a' +a= e$.  Einfach nach $a'$ auflösen. Welche inversen Elemente liegen in [mm] $\mathbb [/mm] Z$?

>
> Vielen Dank für eure Hilfe!

LG mathfunnel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de