www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Beweis lineare Abbildung
Beweis lineare Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis lineare Abbildung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:27 So 29.05.2016
Autor: brover

Aufgabe
Hallo,

ich habe folgende Aufgabe:

Beweisen oder widerlegen Sie folgende Aussage.

Für alle f,g: [mm] $\mathbb{R}^3 \to \mathbb{R}^3$ [/mm] gilt: Sind f und g nicht [mm] $\mathbb{R}$-linear, [/mm] so ist f + g nicht [mm] $\mathbb{R}$-linear. [/mm]

Meine Lösung:

Seien f,g nicht linear.

Sei h(v) = f(v) + g(v). mit $v [mm] \in \mathbb{R}^3$ [/mm]
und sei x=(x1,x2,x3) u. y=(y1,y2,y3). Dann gilt:

1. h(x+y) = f(x+y) + g(x+y) [mm] \neq [/mm] f(x) + g(x) + f(y) + g(x) = h(x) + h(y)
Da f und g nicht linear aus der Vor. gilt, dass $f(x+y) [mm] \neq [/mm] f(x) + f(y)$ und auch $g(x+y) [mm] \neq [/mm] g(x) + g(y)$.
Und somit ist auch $f(x+y) + g(x+y) [mm] \neq [/mm] f(x) + g(x) + f(y) + g(x)$

2. [mm] $h(\lambda [/mm] x) = [mm] f(\lambda [/mm] x) + [mm] g(\lambda [/mm] x) [mm] \neq \lambdaf(x) [/mm] + [mm] \lambdag(x) [/mm] = [mm] \lambda*h(x)$ [/mm]
Da f und g nicht linear sind gilt: [mm] $f(\lambda x)\neq \lambdaf(x)$ [/mm] und [mm] $g(\lambda x)\neq \lambdag(x)$ [/mm]
Also folgt, dass [mm] $f(\lambda [/mm] x) + [mm] g(\lambda [/mm] x) [mm] \neq \lambdaf(x) [/mm] + [mm] \lambdag(x)$ [/mm]

Daher gilt die Beh. und f+g sind auch nicht linear.

        
Bezug
Beweis lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 So 29.05.2016
Autor: hippias

Begründe das erste [mm] $\neq$. [/mm]

Bezug
                
Bezug
Beweis lineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:43 So 29.05.2016
Autor: brover

Meinst du dies: h(x+y) = f(x+y) + g(x+y) $ [mm] \neq [/mm] $ f(x) + g(x) + f(y) + g(x) = h(x) + h(y)
Habe ich das nicht hiermit begründet?

Da f und g nicht linear aus der Vor. gilt, dass $ f(x+y) [mm] \neq [/mm] f(x) + f(y) $ und auch $ g(x+y) [mm] \neq [/mm] g(x) + g(y) $.
Und somit ist auch $ f(x+y) + g(x+y) [mm] \neq [/mm] f(x) + g(x) + f(y) + g(x) $

Bezug
                        
Bezug
Beweis lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:39 Mo 30.05.2016
Autor: fred97


> Meinst du dies: h(x+y) = f(x+y) + g(x+y) [mm]\neq[/mm] f(x) + g(x) +
> f(y) + g(x) = h(x) + h(y)
> Habe ich das nicht hiermit begründet?
>  
> Da f und g nicht linear aus der Vor. gilt, dass [mm]f(x+y) \neq f(x) + f(y)[/mm]
> und auch [mm]g(x+y) \neq g(x) + g(y) [/mm].
>  Und somit ist auch
> [mm]f(x+y) + g(x+y) \neq f(x) + g(x) + f(y) + g(x)[/mm]

Und was machst Du im Falle g=-f ??

FRED


Bezug
        
Bezug
Beweis lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 So 29.05.2016
Autor: fred97


> Hallo,
>  
> ich habe folgende Aufgabe:
>  
> Beweisen oder widerlegen Sie folgende Aussage.
>  
> Für alle f,g: [mm]\mathbb{R}^3 \to \mathbb{R}^3[/mm] gilt: Sind f
> und g nicht [mm]\mathbb{R}[/mm]-linear, so ist f + g nicht
> [mm]\mathbb{R}[/mm]-linear.
>  Meine Lösung:
>  
> Seien f,g nicht linear.
>  
> Sei h(v) = f(v) + g(v). mit [mm]v \in \mathbb{R}^3[/mm]
>  und sei
> x=(x1,x2,x3) u. y=(y1,y2,y3). Dann gilt:
>  
> 1. h(x+y) = f(x+y) + g(x+y) [mm]\neq[/mm] f(x) + g(x) + f(y) + g(x)
> = h(x) + h(y)
>  Da f und g nicht linear aus der Vor. gilt, dass [mm]f(x+y) \neq f(x) + f(y)[/mm]
> und auch [mm]g(x+y) \neq g(x) + g(y)[/mm].
>  Und somit ist auch
> [mm]f(x+y) + g(x+y) \neq f(x) + g(x) + f(y) + g(x)[/mm]
>  
> 2. [mm]h(\lambda x) = f(\lambda x) + g(\lambda x) \neq \lambdaf(x) + \lambdag(x) = \lambda*h(x)[/mm]
>  
> Da f und g nicht linear sind gilt: [mm]f(\lambda x)\neq \lambdaf(x)[/mm]
> und [mm]g(\lambda x)\neq \lambdag(x)[/mm]
>  Also folgt, dass
> [mm]f(\lambda x) + g(\lambda x) \neq \lambdaf(x) + \lambdag(x)[/mm]
>  
> Daher gilt die Beh. und f+g sind auch nicht linear.



die Aussage ist falsch. betrachte zum beispiel g=-f.

fred


Bezug
                
Bezug
Beweis lineare Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:37 Mo 30.05.2016
Autor: brover

Stimmt, danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de