www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Beweis mit Hilfe d. Nullteiler
Beweis mit Hilfe d. Nullteiler < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis mit Hilfe d. Nullteiler: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:25 Fr 04.11.2011
Autor: Zelda

Aufgabe
Beweisen Sie: In einem Körper sind 1 und -1 die einzigen Lösungen der Gleichung [mm] x^2=1. [/mm] (Formen Sie die Gleichung so um, dass die Nullteilerfreiheit benutzt werden kann.)

Ich habe jeweils die Behauptung aufgestellt, dass x=1 und x= -1 ist und den Beweis aufgeschrieben.

Aber wie soll ich beweisen, dass dies die "einzigen" Lösungen sind?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis mit Hilfe d. Nullteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 Fr 04.11.2011
Autor: donquijote


> Beweisen Sie: In einem Körper sind 1 und -1 die einzigen
> Lösungen der Gleichung [mm]x^2=1.[/mm] (Formen Sie die Gleichung so
> um, dass die Nullteilerfreiheit benutzt werden kann.)
>  Ich habe jeweils die Behauptung aufgestellt, dass x=1 und
> x= -1 ist und den Beweis aufgeschrieben.
>
> Aber wie soll ich beweisen, dass dies die "einzigen"
> Lösungen sind?
>  

Du betrachtest eine beliebige Lösung x und zeigst, dass dann [mm] x=\pm [/mm] 1 gelten muss.
[mm] x^2=1\Leftrightarrow x^2-1=0\Leftrightarrow [/mm] (x+1)*(x-1)=0 und dann kommt die Nullteilerfreiheit ins Spiel...

>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Beweis mit Hilfe d. Nullteiler: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:50 Fr 04.11.2011
Autor: Zelda

[mm] x^{2}=1 [/mm] /-1
[mm] x^{2}-1=0 \gdw [/mm] binomische Formel (x+1)(x-1)=0
K ist nullteilerfrei
Behauptung 1: x=1
einsetzen in (x+1)(x-1)=0 [mm] \gdw [/mm]
(1+1)(1-1)=0 [mm] \gdw [/mm] Def. Multiplikation  0=0,
so ist 1 eine Lösung für x [mm] \in [/mm] K

usw. für -1...

ok. Aber das mit den "einzigen" Lösungen, da fehlt mir seit Tagen der richtige Ansatz

Bezug
                        
Bezug
Beweis mit Hilfe d. Nullteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Fr 04.11.2011
Autor: donquijote


> [mm]x^{2}=1[/mm] /-1
>  [mm]x^{2}-1=0 \gdw[/mm] binomische Formel (x+1)(x-1)=0
>  K ist nullteilerfrei
>  Behauptung 1: x=1
>  einsetzen in (x+1)(x-1)=0 [mm]\gdw[/mm]
>  (1+1)(1-1)=0 [mm]\gdw[/mm] Def. Multiplikation  0=0,
> so ist 1 eine Lösung für x [mm]\in[/mm] K
>  
> usw. für -1...
>  
> ok. Aber das mit den "einzigen" Lösungen, da fehlt mir
> seit Tagen der richtige Ansatz

Es steht doch alles da:
Sei [mm] x\in\IK [/mm] eine beliebige Lösung der Gleichung [mm] x^2=1. [/mm] Dann gilt
[mm] x^2=1 [/mm] <=> (x+1)*(x-1) = 0
Da [mm] \IK [/mm] Nullteilerfrei ist folgt x+1=0 oder x-1=0, also x=-1 oder x=1


Bezug
                                
Bezug
Beweis mit Hilfe d. Nullteiler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:02 Fr 04.11.2011
Autor: Zelda

Schande über mein Haupt-jetzt blick ich diesbezüglich endlich durch.Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de