www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Beweis mit Primzahlen
Beweis mit Primzahlen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis mit Primzahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:03 Sa 27.10.2012
Autor: pestaiia

Aufgabe 1
Sei n eine natürliche Zahl [mm] \ge [/mm] 1. Kann es eine Primzahl p geben, so dass p|n und p|(n+1)?

Aufgabe 2
Zeigen Sie: Keine Primzahl p [mm] \le [/mm] n ist Teiler von n!-1 für n [mm] \ge [/mm] 3.

Hallo!
Hat jemand eine Idee wie man diese Beweise angehen könnte? Mir fehlt diese leider.
Bei der zweiten könnte ich mir vorstellen, dass man durch einen Widerspruchsbeweis ans Ziel kommt. Also man nimmt an, es gebe eine Primzahl [mm] p\len [/mm] die Teiler von n!-1 ist und versucht dies zu einem Widerspruch zu führen...oder?
Ich wär euch sehr dankbar über den ein oder anderen Tipp!

        
Bezug
Beweis mit Primzahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:24 Sa 27.10.2012
Autor: SEcki


>  Ich wär euch sehr dankbar über den ein oder anderen
> Tipp!

Zu 1: was teilt die Differenz?

Zu 2: führe es auf die 1 zurück.

SEcki


Bezug
                
Bezug
Beweis mit Primzahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:04 Sa 27.10.2012
Autor: pestaiia

zu 1): Das heißt also wenn p Teiler von n UND Teiler von n+1 sein soll, muss p auch Teiler von 1 sein oder? und weil p eine Primzahl (also p>1) ist ganz sie kein Teiler von 1 sein. Das ist ein Widerspruch und deswegen lautet die Antwort: Nein!
Stimmt das so in etwa?
zu 2) wenn p die differenz n!-1 teilen soll, muss p auch Subtrahend und Minuend teilen. weil p kein Teiler von 1 ist, ist die Aussage somit richtig!?

Bezug
                        
Bezug
Beweis mit Primzahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Sa 27.10.2012
Autor: tobit09

Hallo pestaiia,


> zu 1): Das heißt also wenn p Teiler von n UND Teiler von
> n+1 sein soll, muss p auch Teiler von 1 sein oder?

Genau, denn 1=(n+1)-n.

> und weil
> p eine Primzahl (also p>1) ist ganz sie kein Teiler von 1
> sein. Das ist ein Widerspruch und deswegen lautet die
> Antwort: Nein!

Schön! [ok]


>  zu 2) wenn p die differenz n!-1 teilen soll, muss p auch
> Subtrahend und Minuend teilen.

Diese Schlussfolgerung ist falsch. Z.B. gilt teilt p=2 die Zahl 6=13-7, aber weder 13 noch 7.

Zeige $p|((n!-1)+1)$.
Folgere aus 1., dass p kein Teiler von $n!-1$ sein kann.


Viele Grüße
Tobias

Bezug
                                
Bezug
Beweis mit Primzahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:14 Sa 27.10.2012
Autor: pestaiia

Danke! Ich glaube ich habs kapiert:-)!
zu 2): da gilt [mm] p\le [/mm] n [mm] \Rightarrow [/mm] p|n!
wir nehmen an: p|n!-1
dann müsste auch gelten: p|(n!-(n!-1)) [mm] \Rightarrow [/mm] p|1 [mm] \Rightarrow [/mm] Widerspruch!

Bezug
                                        
Bezug
Beweis mit Primzahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Sa 27.10.2012
Autor: reverend

Hallo pestaiia,

>  zu 2): da gilt [mm]p\le[/mm] n [mm]\Rightarrow[/mm] p|n!
>  wir nehmen an: p|n!-1
>  dann müsste auch gelten: p|(n!-(n!-1)) [mm]\Rightarrow[/mm] p|1
> [mm]\Rightarrow[/mm] Widerspruch!

So ist es.
War doch gar nicht so schwer, oder? ;-)

Grüße
reverend


Bezug
                                                
Bezug
Beweis mit Primzahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:22 Sa 27.10.2012
Autor: pestaiia

Stimmt;-), meistens fehlt einem nur ein kleiner Schups in die richtige Richtung.
Danke nochmals!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de