www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Beweis per Summenzeichen
Beweis per Summenzeichen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis per Summenzeichen: Starthilfe
Status: (Frage) beantwortet Status 
Datum: 17:53 Sa 03.11.2012
Autor: blck

Aufgabe
Beweisen Sie

[mm] \summe_{k=1}^{n} [/mm] (2k-1) = [mm] n^2 [/mm]

durch Hantieren mit dem Summenzeichen

Hallo,
ich habe die Aufgabe schon per vollständiger Induktion bewiesen. Nun soll ich auch nachweisen, dass das stimmt, indem ich mit dem Summenzeichen hantiere.
Meine Idee war jetzt folgende:
[mm] \summe_{k=1}^{n+1} [/mm] (2k-1) = [mm] \summe_{k=1}^{n} [/mm] (2k-1) + (2(n+1)-1) = [mm] n^2 [/mm]
Dann kämne ich aber auf folgendes:
2n+1 = 4n = [mm] n^2 [/mm]

Das haut ja nun wirklich nicht hin. Zumindest für den Teil vorne...
Wo liegt mein Denkfehler?

MfG blck

        
Bezug
Beweis per Summenzeichen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Sa 03.11.2012
Autor: angela.h.b.


> Beweisen Sie
>  
> [mm]\summe_{k=1}^{n}[/mm] (2k-1) = [mm]n^2[/mm]
>  
> durch Hantieren mit dem Summenzeichen
>  Hallo,
>  ich habe die Aufgabe schon per vollständiger Induktion
> bewiesen. Nun soll ich auch nachweisen, dass das stimmt,
> indem ich mit dem Summenzeichen hantiere.
>  Meine Idee war jetzt folgende:
>  [mm]\summe_{k=1}^{n+1}[/mm] (2k-1) = [mm]\summe_{k=1}^{n}[/mm] (2k-1) +  (2(n+1)-1) = [mm] \red{n^2}? [/mm]

Hallo,

wie kommst Du auf das rotmarkierte [mm] n^2? [/mm]
Warum sollte [mm] \summe_{k=1}^{n}(2k-1) [/mm] dasselbe ergeben wie [mm] \summe_{k=1}^{n+1}(2k-1)? [/mm]

Mit "hantieren" ist wohl dies gemeint:

[mm] \summe_{k=1}^{n}(2k-1) [/mm] = [mm] \summe_{k=1}^{n}2k-\summe_{k=1}^{n}1= [/mm] ...

Ich denke, daß Du darauf zurückgreifen kannst, daß [mm] \summe_{k=1}^{n}k=\bruch{n(n+1)}{2} [/mm] bereits gezeigt wurde.

LG Angela


>  Dann kämne ich aber auf folgendes:
>  2n+1 = 4n = [mm]n^2[/mm]
>  
> Das haut ja nun wirklich nicht hin. Zumindest für den Teil
> vorne...
>  Wo liegt mein Denkfehler?
>  
> MfG blck


Bezug
                
Bezug
Beweis per Summenzeichen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:50 Sa 03.11.2012
Autor: blck

Hallo,
das [mm] n^2 [/mm] stand so überzeugend in der Aufgabe :D
Aber jetzt weiß ich leider nicht mehr wie ich es dann machen sollte, klar ich könnt jetzt für für k dir formel einsetzen, nur wie dann weiter?

MfG blck

Bezug
                        
Bezug
Beweis per Summenzeichen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:54 Sa 03.11.2012
Autor: angela.h.b.


> Hallo,
>  das [mm]n^2[/mm] stand so überzeugend in der Aufgabe :D
>  Aber jetzt weiß ich leider nicht mehr wie ich es dann
> machen sollte, klar ich könnt jetzt für für k dir formel
> einsetzen, nur wie dann weiter?

Hallo,

mir ist nicht klar, ob Du jetzt schon weitergemacht hast oder nicht.
Ich hatte doch den Anfang gemacht.

Hattet Ihr denn die Formel?

Wenn ja: was steht nun da?

LG Angela

LG Angela


Bezug
                                
Bezug
Beweis per Summenzeichen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:01 Sa 03.11.2012
Autor: blck

Hallo,
ich ahtte noch gar nichts gemacht. Hab mich vllt. etwas unklar ausgedrückt. Ich weiß nicht wie ich nach deinem Anfang weiter machen muss.

Danke für die schnelle Antwort,
blck

Bezug
                                        
Bezug
Beweis per Summenzeichen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Sa 03.11.2012
Autor: angela.h.b.

Hallo,

welche Regeln fürs Rechnen mit Summen kennst Du denn?

LG Angela


Bezug
                                                
Bezug
Beweis per Summenzeichen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:54 So 04.11.2012
Autor: blck

Hallo,
irgendwie steh ich auf dem Schlauch. Klar weiß ich wie man mit Summen rechnet. Was ich jetzt machen würde wäre zu sagen ok 2k = n(n+1), d.h [mm] n^2 [/mm] + n und dann [mm] \summe_{i=1}^{n} [/mm] 1 davon abziehen. Nur dann steht da [mm] n^2 [/mm] + n - 1 und das hilft mir nicht wirklich weiter. Oder steht aus der zweiten Summe dort gar keine 1 sondern ein n? Weil dann wär es ja gelöst...

Danke,
blck

Bezug
                                                        
Bezug
Beweis per Summenzeichen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:05 So 04.11.2012
Autor: reverend

Hallo blck,

Du hast da einen Denkfehler.

Es ist [mm] \summe_{i=1}^{n}1=n [/mm]

Da wird halt n-mal die 1 aufaddiert.

Grüße
reverend


Bezug
                                                                
Bezug
Beweis per Summenzeichen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:19 So 04.11.2012
Autor: blck

Hallo,
ja irgendwie blöd :D
Danke jetzt ists gelöst.

Schönen Sonntag noch!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de