www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Induktionsbeweise" - Beweis vollständige Induktion
Beweis vollständige Induktion < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 Do 20.09.2007
Autor: wi1234

Hallo,

ich haber mir wieder einmal eine Aufgabe gesucht, die ich nicht zu Ende lösen kann. Evtl. kann mir jemand helfen:

Ich bin bis zum Induktionsschluss gekommen und möchte nur noch auflösen. Also, der Induktionsschluss sieht so aus:

[mm] \sum_{k=1}^{m+1} k^3 [/mm] =  [mm] \bruch{m^2 (m+1)^2}{4} [/mm] + [mm] (m+1)^3 [/mm]


Das Ziel ist:

[mm] \bruch{(m+1)^2*(m+2)^2}{4} [/mm]

Es wäre klasse wenn Ihr/Du mir den Weg so erklären könntet, dass ich ihn nachvollziehen kann.

Liebe Grüße, Heiko (funheiko[ät]gmx.de)

        
Bezug
Beweis vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Do 20.09.2007
Autor: angela.h.b.

Hallo,

>
> [mm]\sum_{k=1}^{m+1} k^3[/mm] =  [mm]\bruch{m^2 (m+1)^2}{4}[/mm] + [mm](m+1)^3[/mm]

= [mm] (m+1)^2(\bruch{m^2 }{4}+(m+1))=\bruch{(m+1)^2 }{4}(m^2+4m+4)= [/mm]

> [mm]\bruch{(m+1)^2*(m+2)^2}{4}[/mm]

Du mußt, wenn Du an solch einer Stelle wie oben bist, das Ziel ganz scharf ins Auge fassen. Hier wolltest Du das Ergebnis [mm] (m+1)^2*irgendwas, [/mm] und dieser Faktor steckte in beiden Summanden.

Gruß v. Angela

Bezug
                
Bezug
Beweis vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:01 Do 20.09.2007
Autor: wi1234

Hallo Angela, liebe Mitleser,

danke für Deine schnelle Hilfe!

Ich kann den Weg aber nicht nachvollziehen. Zuerst hast Du (m+2)² ausgeklammert und vor die Klammer geschrieben, richtig!? Hast Du dann wieder mit 4 erweitert?

Was hast Du im Folgeschritt getan,wie kommen die Zahlen zustande? Stehe auf dem Schlauch ...

Bezug
                        
Bezug
Beweis vollständige Induktion: nächste Schritte
Status: (Antwort) fertig Status 
Datum: 19:34 Do 20.09.2007
Autor: Loddar

Hallo wi1234!


> Zuerst hast Du (m+2)² ausgeklammert und vor die Klammer geschrieben,
> richtig!?

Fast ... sie hat [mm] $(m+\red{1})^2$ [/mm] ausgeklammert ...


> Hast Du dann wieder mit 4 erweitert?

Ja, denn hier wurde die hintere Klammer auf den Hauptenner gebacht:

[mm] $$\left[\bruch{m^2 }{4}+(m+1)\right] [/mm] \ = \ [mm] \left[\bruch{m^2 }{4}+\bruch{4*(m+1)}{4}\right] [/mm] \ = \ [mm] \bruch{m^2+4*(m+1)}{4} [/mm] \ = \ [mm] \bruch{m^2+4*m+4}{4}$$ [/mm]

Und nun im Zähler eine binomische Formel anwenden ...


Gruß
Loddar


Bezug
                                
Bezug
Beweis vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:26 Mo 24.09.2007
Autor: wi1234

Danke, ich habe es verstanden. Manchmal stehe ich auf dem Schlauch, dabei ist die Vorgehensweise immer die gleiche bei der vollständigen Induktion. Man darf wirklich NIE das Ziel aus dem Blick verlieren und muss immer streng darauf hin arbeiten und die Rechengesetze im Kopf haben.

Liebe Grüße und tolles Forum, Heiko

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de