www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Beweis von Log-Gesetzen
Beweis von Log-Gesetzen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis von Log-Gesetzen: Beweis
Status: (Frage) beantwortet Status 
Datum: 11:37 So 29.10.2006
Autor: Squirl

Aufgabe 1
Beweise mit Hilfe der Logarithmengesetze:

Für alle b [mm] \in \IR^{+} [/mm] \ {1}, x [mm] \in \IR^{+} [/mm] gilt: [mm] log_{b}x [/mm] = [mm] \bruch{lg x}{lg b} [/mm]


Aufgabe 2
Beweise:
Verläuft ein radioaktiver Zerfallsprozess nach dem Gesetz N (t) = [mm] N_{0}e^{-kt}, [/mm] dann gilt für die Halbwertszeit: [mm] t_{h} [/mm] = [mm] \bruch{ln2}{k} [/mm]


Meine Frage dazu lautet wie folgt:

Könnte mir einer von euch bitte einen Lösungsansatz zeigen, der mir verdeutlicht, wie ich diese beiden Gesetze beweisen kann? Denn ich finde bei beiden Aufgaben keinen. Die Logarithmengesetze sind mir bekannt und auch wie ich sie umformen kann. Es happert nur am Ansatz.
Ich wäre den Mitgliedern des Forums wirklich sehr dankbar dafür.
Sollten Fragen zu den Aufgaben bestehen, so helfe ich gerne mit den Informationen, wenn ich sie stellen kann.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Beweis von Log-Gesetzen: Halbwertzeit
Status: (Antwort) fertig Status 
Datum: 11:42 So 29.10.2006
Autor: Loddar

Hallo Squirl,

[willkommenmr] !!


Für die gesuchte Halbwertszeit [mm] $t_h$ [/mm] gilt ja: [mm] $N(t_h) [/mm] \ = \ [mm] \bruch{1}{2}*N_0$ [/mm]


Setze dies also in die genannte Gleichung ein und stelle nach [mm] $t_h$ [/mm] um.

Bedenke dabei, dass auch gilt: [mm] $\ln\left(\bruch{1}{2}\right) [/mm] \ = \ [mm] \ln(1)-\ln(2) [/mm] \ = \ [mm] 0-\ln(2) [/mm] \ = \ [mm] -\ln(2)$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Beweis von Log-Gesetzen: Lösungsweg Halbwertszeit
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:59 So 29.10.2006
Autor: Squirl

So also wenn ich dich jetzt richtig verstanden habe dann sieht es wie folgt aus:

[mm] \bruch{1}{2} \* N_{0} [/mm] = [mm] N_{0} \* e^{-kt_{h}} [/mm]    (teilen durch [mm] N_{0}) [/mm]

[mm] \gdw \bruch{1}{2} [/mm] = [mm] e^{-kt_{h}} [/mm]    (log ergänzen)

[mm] \gdw [/mm] ln [mm] (\bruch{1}{2}) [/mm] = ln [mm] (e^{-kt_{h}}) [/mm]    (log anwenden)

[mm] \gdw [/mm] - ln (2) = [mm] -kt_{h} [/mm]    ( durch -k  teilen

[mm] \gdw \bruch{ln (2)}{k} [/mm] = [mm] t_{h} [/mm]

So sieht meine Lösung aus, wenn ich dich richtig verstanden habe. Ist das Ergebnis auch formal so richtig? Denn inhaltlich stimmt es ja.

Bezug
        
Bezug
Beweis von Log-Gesetzen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 So 29.10.2006
Autor: Event_Horizon

Hi!

Also, die zweite Aufgabe hast du auch in meinen Augen formal korrekt gelöst.

zur ersten:

Du willst die Gleichung

[mm] $x=b^a$ [/mm]

nach a umformen,

Du kannst einfach den log zur Basis b benutzen, dann siehts so aus:

[mm] $a=\log_bx$ [/mm]

Du kannst aber auch einen beliebigen Logarithmus zur Basis c anwenden, dann sieht das erstmal so aus:

[mm] $\log_cx=\log_cb^a$ [/mm]

Jetzt gibt es da das eine log-Gesetz, das besagt, daß du den Exponenten vor den log ziehen darfst:

[mm] $\log_cx=a*\log_cb$ [/mm]

Und hieraus ergibt sich:

[mm] $a=\bruch{\log_cx}{\log_cb}$ [/mm]

Das ist das gleiche wie oben, also

[mm] $a=\bruch{\log_cx}{\log_cb}=\log_bx$ [/mm]

Du müßtest noch drüber nachdenken, ob dieser bruch immer definiert ist. Ist er nämlich nicht, aber wenn du drüber nachdenkst, wann er das nicht ist, wirst du auch feststellen, daß das nicht schlimm ist...

Bezug
                
Bezug
Beweis von Log-Gesetzen: Aufgabe gelöst
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:32 So 29.10.2006
Autor: Squirl

Die Aufgaben sind soweit gelöst. Ich danke meinen Helfern für die schnelle Hilfe und die Denkanstöße.
Meine Lösungen habe ich ja soweit gepostet.
Vielen Dank nochmal

Grüße Squirl

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de